

STRUCTURAL ANALYSIS

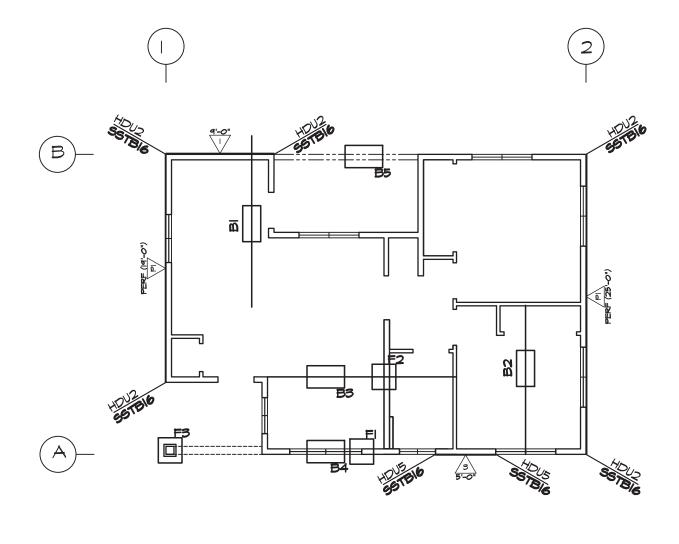
For: City of Orland ADU's Std. Orland, CA 749 SQFT Project # 23M-007

> **July 24, 2023** (PC1 SUBMITTAL)

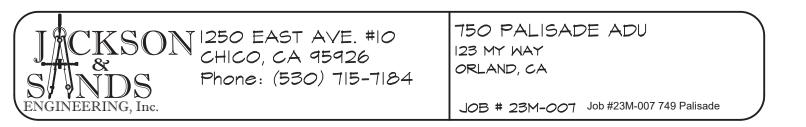
JACKSON & SANDS ENGINEERING, Inc. 1250 East Ave. #10 Chico, CA 95926 <u>info@jacksonandsandsengineering.com</u>

TABLE OF CONTENTS:

SCOPE OF WORK:	1
PROJECT LAYOUT:	2
DESIGN LOADS / CRITERIA:	3-4
LATERAL DESIGN:	5-36
BEAM DESIGN:	37-41
FOOTING DESIGN:	42-50


SCOPE OF WORK

Scope


The following Structural Analysis is for a new light-wood framed single family residence to be built on a new slab-on-grade floor. Analysis of structure was performed with respect to the forces of seismic and wind and gravity using the applicable chapters of the A.S.C.E. 7-16. The structural design of this project used two methods for lateral restraint system: Perforated shear wall design (SDPWS 2021 sec. 4.3.5.3) and segmented shear wall design (SDPWS 2021 sec. 4.3.5.1). Analysis and design for gravity loads were performed to verify beam design per AWC NDS 2021 for wood members.

Analysis

The building was analyzed as 1 diaphragm and idealized as flexible for a simplified analysis. The footings and beams were designed with appropriate design loads using the Enercalc and Forte web software.

PROJECT LAYOUT |/8" = |'-0"

OSHPD

Orland, CA 95963, USA

Latitude, Longitude: 39.7473803, -122.1963748

Walker.St Farwood. Bat. & Grill Walker.St Map data © 202: Cocice Map data © 202: Map data © 202: Date 60000 SAMMY Map data © 202: Date 64/2023, 3:10:56 PM 0.00000 SAMMY Design Code Reference Document ASCE7-16 Nap data © 202: Risk Category II Nap data © 202: Nap data © 202: Sto Class D - Default (See Section 11.4.3) Sto Class D - Default (See Section 11.4.3) Type Value Description Sector 10000 Sector 11.4.3 Ste-modified spectral acceleration value Systa 0.355 MCEg ground motion. (for 0.2 second period) Sector 11.4.8 Ste-modified spectral acceleration value Systa 0.11 Site-modified spectral acceleration value Sector 11.4.8 Ste-modified spectral acceleration value Systa 0.873 Numeric seismic design value at 1.0 second SA Spinon Type Value Description Sector 11.4.8 Set amplification factor at 0.2 second Fr, null-See Section 11.4.8 Set amplification factor at 0.2 second Sector 10.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		/S C Dollar Ge	neral Richfield Metal Swift St
Don SAMMYGolusa StMap data @ 2022Ode Reference DocumentA4/2023, 3:10:58 PMDescriptionASCE7-16Name data @ 2022Default (See Section 11.4.3)TypeValueDescriptionSg0.842MCE _R ground motion. (for 0.2 second period)Sys0.673MCE _R ground motion. (for 0.2 second period)Sys0.673Mumeric seismic design value at 0.2 second SASys0.673Numeric seismic design value at 1.0 second SASys0.673Numeric seismic design value at 0.2 second SASys0.673Numeric seismic design value at 0.2 second SASys0.673Sys0.673Numeric seismic design value at 0.2 second SASys0.673Numeric seismic design value at 0.2 second SA <th< th=""><th>Tehama St</th><th>Walker St</th><th>Walker St Farwood Bar & Grill W Walker St</th></th<>	Tehama St	Walker St	Walker St Farwood Bar & Grill W Walker St
Map data @2023 Pate 4/4/2023, 3:10:58 PM ASEET-16 NEW Colspan="2">SECTION Site Class D - Default (See Section 114.3) Type Value D - Default (See Section 114.3) Site Class D - Default (See Section 114.3) Type Value D - Default (See Section 114.3) Site - Modified spectral acceleration value Site amplification factor at 0.2 second Fig. 1.2 Site amplification factor at 0.2 second Fig. 1.2 Site amplification factor at 0.2 second Fig. 1.2 Site amplification factor at 0.2 second Site amplification factor at 0.2 second			
Date 4/4/2023, 3:10:58 PM Dasing Code Reference Document ASCE7-16 Risk Category II Site Class D - Default (See Section 11.4.3) Type Value Description Sa 0.842 MCE _R ground motion. (for 1.0s period) Shug 1.01 Site-modified spectral acceleration value Shug 1.01 Site-modified spectral acceleration value Spg 0.673 Numeric seismic design value at 0.2 second SA Spg. 0.673 Numeric seismic design value at 1.0 second SA Spg. null -See Section 11.4.8 Seismic design value at 1.0 second SA Spg. null -See Section 11.4.8 Seismic design value at 1.0 second SA Spg. null -See Section 11.4.8 Seismic design value at 1.0 second SA Spg. null -See Section 11.4.8 Seismic design value at 1.0 second SA Spg. null -See Section 11.4.8 Seismic design value at 0.2 second Fq 1.2 Ste amplification factor at 0.2 second Fq 1.2 Ste amplification factor at 1.0 second FqGA _{N0} 0.373 MCE _G peak ground acceleration FqGA _{N0} 0.457<	Goo	gle	
ABCE7-16IIIIDefault (Section 11.4.3)Default (Section 11.4.3)Default (Section 11.4.3)Site - Section 11.4.3Site - Section 11.4.5Site - Section 11.4	Date		
D - Default (See Section 11.4.3) Type Value Description S ₃ 0.842 MCE _R ground motion. (for 0.2 second period) S ₁ 0.355 MCE _R ground motion. (for 1.0s period) S _{MS} 1.01 Site-modified spectral acceleration value S _{M1} null-See Section 11.4.8 Site-modified spectral acceleration value S _{D5} 0.673 Numeric seismic design value at 0.2 second SA S _{D1} null-See Section 11.4.8 Site-modified spectral acceleration value S _{D2} 0.673 Numeric seismic design value at 0.2 second SA S _{D1} null-See Section 11.4.8 Site-modified spectral acceleration SDC null-See Section 11.4.8 Site amplification factor at 0.2 second SD null-See Section 11.4.8 Site amplification factor at 0.2 second Fy null-See Section 11.4.8 Site amplification factor at 1.0 second Fy null-See Section 11.4.8 Site amplification factor at PGA PGA 0.373 MCE _G peak ground acceleration Fy null-See Section 11.4.8 Site amplification factor at PGA Sutt		ode Reference Document	
TypeValueDescriptionS10.842MCER ground motion. (for 0.2 second period)S10.355MCER ground motion. (for 1.0s period)S4681.01Site-modified spectral acceleration valueS441null-See Section 11.4.8Site-modified spectral acceleration valueSp30.673Numeric seismic design value at 0.2 second SASp1null-See Section 11.4.8Numeric seismic design value at 1.0 second SASp1null-See Section 11.4.8Seismic design categoryFa1.2Site amplification factor at 0.2 secondFynull-See Section 11.4.8Site amplification factor at 1.0 secondFynull-See Section 11.4.8Site amplification factor at 1.0 secondFynull-See Section 11.4.8Site amplification factor at 1.0 secondFynull-See Section 11.4.8Site amplification factor at PGAFy1.227Site modified peak ground accelerationFy1.6Long-period transition period in secondsSsRT0.842Probabilistic risk-targeted ground motion. (0.2 second)SsBH0.928Factored uniform-hazard (2% probability of exceedance in 50 years) spectral accelerationSsD1.5Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.ShIH0.397Factored de	Risk Cate	egory	Ш
S ₈ 0.842 MCE _R ground motion. (for 0.2 second period) S ₁ 0.355 MCE _R ground motion. (for 1.0s period) S _{MM} 1.01 Site-modified spectral acceleration value S _{MM} null-See Section 11.4.8 Site-modified spectral acceleration value S _{D5} 0.673 Numeric seismic design value at 0.2 second SA S _{D1} null-See Section 11.4.8 Numeric seismic design value at 1.0 second SA S _{D2} null-See Section 11.4.8 Seismic design category F _a 1.2 Site amplification factor at 0.2 second F _V null-See Section 11.4.8 Seismic design category F _a 1.2 Site amplification factor at 0.2 second F _V null-See Section 11.4.8 Site amplification factor at 1.0 second F _{PGA} 1.227 Site amplification factor at PGA O457 Site modified peak ground acceleration S _R 0.442 Cong-period transition period in seconds S _R 0.442 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration S _R 0.55 Factored duniform-hazard (2% probability of exceedance in 50	Site Clas	s	D - Default (See Section 11.4.3)
NCE MCE ground motion. (for 1.0s period) Shns 1.01 Site-modified spectral acceleration value Shn1 null-See Section 11.4.8 Site-modified spectral acceleration value Sps 0.673 Numeric seismic design value at 0.2 second SA Sp1 null-See Section 11.4.8 Numeric seismic design value at 0.2 second SA Sp1 null-See Section 11.4.8 Seismic design value at 1.0 second SA Sp2 null-See Section 11.4.8 Seismic design value at 1.0 second SA Sp2 null-See Section 11.4.8 Seismic design value at 0.2 second SA Sp2 null-See Section 11.4.8 Seismic design value at 0.2 second SA Sp2 null-See Section 11.4.8 Seismic design value at 0.2 second SA Sp2 null-See Section 11.4.8 Seismic design value at 0.2 second Fq null-See Section 11.4.8 Site amplification factor at 0.2 second Fy null-See Section 11.4.8 Site amplification factor at PGA Sp3 0.457 Site amplification factor at PGA Sp4 0.457 Site amplification factor at CS second) Sp4 0.457 Site amplification fac	Туре	Value	Description
NBS 1.01 Site-modified spectral acceleration value S _{M1} null-See Section 11.4.8 Site-modified spectral acceleration value S _{D2} 0.673 Numeric seismic design value at 0.2 second SA S _{D1} null-See Section 11.4.8 Numeric seismic design value at 1.0 second SA SD2 null-See Section 11.4.8 Seismic design value at 1.0 second SA SD2 null-See Section 11.4.8 Seismic design category Fa 1.2 Site amplification factor at 0.2 second Fv null-See Section 11.4.8 Site amplification factor at 0.2 second Fv null-See Section 11.4.8 Site amplification factor at 0.2 second Fv null-See Section 11.4.8 Site amplification factor at 0.2 second Fv null-See Section 11.4.8 Site amplification factor at 0.2 second Fv null-See Section 11.4.8 Site amplification factor at 1.0 second Fv null-See Section 11.4.8 Site amplification factor at PGA 0.373 Site amplification factor at PGA Site amplification factor at PGA Site amplification price in seconds Site Site amplification price in seconds	SS	0.842	MCE _R ground motion. (for 0.2 second period)
Free Site-modified spectral acceleration value Sp_M null -See Section 11.4.8 Site-modified spectral acceleration value Sp_D null -See Section 11.4.8 Numeric seismic design value at 0.2 second SA Type Value Description SDC null -See Section 11.4.8 Seismic design category F_a 1.2 Site amplification factor at 0.2 second F_v null -See Section 11.4.8 Site amplification factor at 0.2 second F_v null -See Section 11.4.8 Site amplification factor at 0.2 second F_v null -See Section 11.4.8 Site amplification factor at 1.0 second FPGA 0.373 MCE _G peak ground acceleration FPGA 1.227 Site amplification factor at PGA SRT 0.457 Site modified peak ground acceleration Sg_D 1.5 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration Sg_D 0.355 Probabilistic risk-targeted ground motion. (1.0 second) Sg_D 1.5 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. Sg_D 0.35 Factored determinist	S ₁	0.355	MCE _R ground motion. (for 1.0s period)
SpS 0.673 Numeric seismic design value at 0.2 second SA Sp1 null -See Section 11.4.8 Numeric seismic design value at 0.2 second SA Type Vue Description SpC null -See Section 11.4.8 Seismic design value at 0.2 second SA Fa 1.2 Ste amplification factor at 0.2 second Fyve null -See Section 11.4.8 Ste amplification factor at 0.2 second Fyve null -See Section 11.4.8 Ste amplification factor at 0.2 second Fyve null -See Section 11.4.8 Ste amplification factor at 0.2 second Fyve null -See Section 11.4.8 Ste amplification factor at 0.2 second Fyve null -See Section 11.4.8 Ste amplification factor at 1.0 second Fyve 1.22 Ste amplification factor at PGA O373 Ste amplification factor at PGA Ste amplification priod in seconds Stype 1.42 Ste amplification priod in seconds Ste amplification priod in seconds Stype 1.42 Ste amplificatisk-targeted ground motion. (0.2 second) Step Stype 1.5 Factored deterministic acceleration value. (1.0 second) Step	S _{MS}	1.01	Site-modified spectral acceleration value
Sp1null-See Section 11.4.8Numeric seismic design value at 1.0 second SATypeValueDescriptionSDCnull-See Section 11.4.8Seismic design categoryF_a1.2Site amplification factor at 0.2 secondF_vnull-See Section 11.4.8Site amplification factor at 1.0 secondFQA0.373MCEg peak ground accelerationFPGA1.227Site amplification factor at PGAPGAm0.457Site modified peak ground accelerationT_L16Long-period transition period in secondsSSRT0.842Probabilistic risk-targeted ground motion. (0.2 second)SSRT0.355Forded deterministic acceleration value. (0.2 second)SINH0.397Forded deterministic acceleration value. (0.2 second)SINH0.397Forded deterministic acceleration value. (1.0 second)SINH0.6Forderd uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.SINH0.397Factored deterministic acceleration value. (1.0 second)SINH0.397Factored deterministic acceleration value. (1.0 second)SINH0.5Factored deterministic acceleration value. (Peak Ground Acceleration)PGA0.5Factored deterministic acceleration value. (Peak Ground Acceleration)SINH0.5Factored deterministic acceleration value. (Peak Ground Acceleration)SINH0.5Factored deterministic acceleration value. (Peak Ground Acceleration)SINH0.5Factored deterministic acceleration value. (Peak Ground Acceleration)SI	S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value
TypeValueDescriptionSDCnull -See Section 11.4.8Seismic design categoryFa1.2Site amplification factor at 0.2 secondFvnull -See Section 11.4.8Site amplification factor at 1.0 secondPGA0.373MCE _G peak ground accelerationFpGA1.227Site amplification factor at PGAPGA _M 0.457Site modified peak ground accelerationTL16Long-period transition period in secondsSSRT0.842Probabilistic risk-targeted ground motion. (0.2 second)SSUH0.928Factored deterministic acceleration value. (0.2 second)SIT0.355Probabilistic risk-targeted ground motion. (1.0 second)SIT0.397Factored deterministic acceleration value. (0.2 second)SIT0.397Factored deterministic acceleration value. (0.1 second)SID0.6Factored deterministic acceleration value. (1.0 second)SHM0.373Uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.SID0.6Factored deterministic acceleration value. (1.0 second)PGAu0.5Factored deterministic acceleration value. (Peak Ground Acce	S _{DS}	0.673	Numeric seismic design value at 0.2 second SA
Superiornull -See Section 11.4.8Seismic design categoryFa1.2Site amplification factor at 0.2 secondFvnull -See Section 11.4.8Site amplification factor at 1.0 secondPGA0.373MCE _G peak ground accelerationPGA1.227Site amplification factor at PGAPGA _M 0.457Site amplification factor at PGATL16Long-period transition period in secondsSSRT0.842Probabilistic risk-targeted ground motion. (0.2 second)SSLH0.928Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1D0.397Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1D0.6Factored deterministic acceleration value. (1.0 second)S1D0.5Factored deterministic acceleration value. (1.0 second)PGA0.5Factored deterministic acceleration value. (1.0 second)S1D0.6Factored deterministic acceleration value. (1.0 second)S1D0.5Factored deterministic acceleration value. (1.0 second)PGA0.5Factored deterministic acceleration value. (Peak Ground Acceleration)PGA0.5Factored deterministic acceleration value. (Peak Ground Acceleration)PGA0.373Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration	S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA
Fa1.2Site amplification factor at 0.2 secondFvnull -See Section 11.4.8Site amplification factor at 1.0 secondPGA0.373MCE _G peak ground accelerationPGA1.227Site amplification factor at PGAPGA _M 0.457Site modified peak ground accelerationT_L16Long-period transition period in secondsSSRT0.842Probabilistic risk-targeted ground motion. (0.2 second)SSUH0.928Factored uniform-hazard (2% probability of exceedance in 50 years) spectral accelerationSITT0.355Probabilistic risk-targeted ground motion. (1.0 second)S1DH0.397Factored deterministic acceleration value. (0.2 second)S1DH0.397Factored deterministic acceleration value. (1.0 second)S1DH0.397Factored deterministic acceleration value. (1.0 second)S1DH0.373Uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1DH0.373Diatored deterministic acceleration value. (1.0 second)S1DH0.397Factored deterministic acceleration value. (1.0 second)S1DH0.373Uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1DH0.373Diatored deterministic acceleration value. (1.0 second)S1DH0.373Diatored deterministic acceleration value. (1.0 second)S1DH0.373Uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1DH0.373Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration. <td>Туре</td> <td>Value</td> <td>Description</td>	Туре	Value	Description
Fvnull-See Section 11.4.8Site amplification factor at 1.0 secondPGA0.373MCE _G peak ground accelerationFpGA1.227Site amplification factor at PGAPGA _M 0.457Site modified peak ground accelerationT_L16Long-period transition period in secondsSRTM0.842Probabilistic risk-targeted ground motion. (0.2 second)SQLH0.52Factored uniform-hazard (2% probability of exceedance in 50 years) spectral accelerationSQLH0.355Probabilistic risk-targeted ground motion. (1.0 second)S1UH0.397Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1D0.6Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1D0.373Factored deterministic acceleration value. (1.0 second)PGA _M 0.373Factored deterministic acceleration value. (Peak Ground Acceleration)PGA _M 0.373Inform-hazard (2% probability of exceedance in 50 years) spectral acceleration.	SDC	null -See Section 11.4.8	Seismic design category
PGA0.373MCE _G peak ground accelerationFpGA1.227Site amplification factor at PGAPGA _M 0.457Site modified peak ground accelerationT_L16Long-period transition period in secondsSRT0.842Probabilistic risk-targeted ground motion. (0.2 second)SSUH0.928Factored uniform-hazard (2% probability of exceedance in 50 years) spectral accelerationS1T0.355Probabilistic risk-targeted ground motion. (1.0 second)S1HH0.397Factored deterministic acceleration value. (0.2 second)S1DH0.40Pactored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1DH0.397Factored deterministic acceleration value. (1.0 second)S1DH0.40Factored deterministic acceleration value. (1.0 second)S1DH0.51Factored deterministic acceleration value. (1.0 second)S1DH0.51Gactored deterministic acceleration value. (Peak Ground Acceleration)S1DH0.53Gactored deterministic acceleration value. (Peak Ground Acceleration)<	F_a	1.2	Site amplification factor at 0.2 second
FPGA1.227Site amplification factor at PGAPGA _M 0.457Site modified peak ground accelerationT _L 16Long-period transition period in secondsSsRT0.842Probabilistic risk-targeted ground motion. (0.2 second)SsUH0.928Factored uniform-hazard (2% probability of exceedance in 50 years) spectral accelerationSsD1.5Factored deterministic acceleration value. (0.2 second)S1RT0.355Probabilistic risk-targeted ground motion. (1.0 second)S1UH0.397Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1D0.6Factored deterministic acceleration value. (1.0 second)PGAd _H 0.5Factored deterministic acceleration value. (1.0 second)PGAd _H 0.373Uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.	F_v	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGAM0.457Site modified peak ground accelerationT_L16Long-period transition period in secondsSsRT0.842Probabilistic risk-targeted ground motion. (0.2 second)SsUH0.928Factored uniform-hazard (2% probability of exceedance in 50 years) spectral accelerationSsD1.5Factored deterministic acceleration value. (0.2 second)S1RT0.355Probabilistic risk-targeted ground motion. (1.0 second)S1HH0.397Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1D0.6Factored deterministic acceleration value. (1.0 second)PGAdH0.5Factored deterministic acceleration value. (Peak Ground Acceleration)PGAUH0.373Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration.	PGA	0.373	MCE _G peak ground acceleration
TL16Long-period transition period in secondsSsRT0.842Probabilistic risk-targeted ground motion. (0.2 second)SsUH0.928Factored uniform-hazard (2% probability of exceedance in 50 years) spectral accelerationSsD1.5Factored deterministic acceleration value. (0.2 second)S1RT0.355Probabilistic risk-targeted ground motion. (1.0 second)S1UH0.397Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1D0.6Factored deterministic acceleration value. (1.0 second)PGAdu0.5Factored deterministic acceleration value. (Peak Ground Acceleration)PGAUH0.373Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration	F _{PGA}	1.227	Site amplification factor at PGA
SsRT0.842Probabilistic risk-targeted ground motion. (0.2 second)SsUH0.928Factored uniform-hazard (2% probability of exceedance in 50 years) spectral accelerationSsD1.5Factored deterministic acceleration value. (0.2 second)S1RT0.355Probabilistic risk-targeted ground motion. (1.0 second)S1UH0.397Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1D0.6Factored deterministic acceleration value. (1.0 second)PGAdu0.5Factored deterministic acceleration value. (Peak Ground Acceleration)PGALH0.373Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration	PGA _M	0.457	Site modified peak ground acceleration
SsUH0.928Factored uniform-hazard (2% probability of exceedance in 50 years) spectral accelerationSsD1.5Factored deterministic acceleration value. (0.2 second)S1RT0.355Probabilistic risk-targeted ground motion. (1.0 second)S1UH0.397Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1D0.6Factored deterministic acceleration value. (1.0 second)PGAd0.5Factored deterministic acceleration value. (Peak Ground Acceleration)PGAUH0.373Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration	ΤL	16	Long-period transition period in seconds
SsD1.5Factored deterministic acceleration value. (0.2 second)S1RT0.355Probabilistic risk-targeted ground motion. (1.0 second)S1UH0.397Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1D0.6Factored deterministic acceleration value. (1.0 second)PGAd0.5Factored deterministic acceleration value. (Peak Ground Acceleration)PGAUH0.373Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration	SsRT	0.842	Probabilistic risk-targeted ground motion. (0.2 second)
S1RT0.355Probabilistic risk-targeted ground motion. (1.0 second)S1UH0.397Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1D0.6Factored deterministic acceleration value. (1.0 second)PGAd0.5Factored deterministic acceleration value. (Peak Ground Acceleration)PGAUH0.373Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration	SsUH	0.928	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
S1UH0.397Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.S1D0.6Factored deterministic acceleration value. (1.0 second)PGAd0.5Factored deterministic acceleration value. (Peak Ground Acceleration)PGAUH0.373Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration	SsD	1.5	Factored deterministic acceleration value. (0.2 second)
S1D0.6Factored deterministic acceleration value. (1.0 second)PGAd0.5Factored deterministic acceleration value. (Peak Ground Acceleration)PGAUH0.373Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration	S1RT	0.355	Probabilistic risk-targeted ground motion. (1.0 second)
PGAd0.5Factored deterministic acceleration value. (Peak Ground Acceleration)PGAUH0.373Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration	S1UH	0.397	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
PGA _{UH} 0.373 Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration	S1D	0.6	Factored deterministic acceleration value. (1.0 second)
	PGAd	0.5	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS} 0.907 Mapped value of the risk coefficient at short periods	PGA _{UH}	0.373	Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration
	C _{RS}	0.907	Mapped value of the risk coefficient at short periods

	Gravity Loads:	Per ASCE 7-16		SEISMIC				
Roof Dea	d Loads:	Comp Roofing	5 psf	ASCE 7-16				
		1/2" Roof ply	1.8 psf	EQUIVALENT LATERA	L			
Slope=	<mark>6</mark> /12	Framing	1.5 psf	FORCE PROCEEDURE				
	27 Degrees	Insulation	1 psf	Design Category:	D (default)			
		1/2" covering	2.8 psf	=	11			
		Solar	3 psf	Ss =	0.842			
		Misc	1 psf	S1 =	0.355			
		Total =	16.1 psf	SMS =	1.01			
		Total Sloped=	19.00 psf	SM1 =	null			
				SDS =	0.673			
Roof Live	Loads	Construction=	20 psf	SD1 =	null			
		Ground Snow=	0 psf	TL =	16			
		Flat Roof Snow=	0 psf	R0 =	1.3			
		Sloped Roof Snow=	0.0 psf	R =	6.5			
				SNOW LOA	D			
Exterior V	Vall Dead Load	Wood	2.00 psf	Sloped Roof	0.0 PSF			
		3/8" ply	2.40 psf	Seismic =	0 PSF			
		2x6 Framing	1.70 psf	WIND				
		1/2" sheetrock	2.20 psf	MAIN WIND FORCE R	ESISTING SYSTEM,			
		Insulation	1.10 psf	ALL HEIGHTS METHO	D ASCE 7-16			
		Misc	1.00 psf	CHAPTERS 26 & 27				
		Wall total-	11.00 pcf					
		Wall total=	11.00 psf	WIND SPEED =	95 MPH			
Interior				EXPOSURE =	С			
Interior w	vall dead load	2x Framing	1.7 psf		С			
Interior w	vall dead load	2x Framing 1/2" sheetrock	1.7 psf 4.4 psf	EXPOSURE =	С			
Interior w	vall dead load	2x Framing	1.7 psf	EXPOSURE =	С			
Interior w	vall dead load	2x Framing 1/2" sheetrock	1.7 psf 4.4 psf	EXPOSURE =	С			
Interior w	vall dead load	2x Framing 1/2" sheetrock Misc	1.7 psf 4.4 psf 1 psf	EXPOSURE =	С			

Design Loads / Criteria

SOFTWARE FOR WOOD DESIGN

WoodWorks® Shearwalls 2023

23M-007 750 Palisade.wsw

Apr. 6, 2023 13:21:32

Project Information

DESIGN SETTINGS

	ign Code Awc sdpws 2021		Vind Standard rectional (All he	ights)	Seismic Standard ASCE 7-16
	Load Con	nbinations		Building Cod	e Capacity Modification
For Design (ASD)		For Deflection (Stre	ength)	Wind	Seismic
0.70 Seismic +	+ 0.60 Dead	1.00 Seismic +	0.90 Dead	1.00	1.00
0.60 Wind +	+ 0.60 Dead	1.00 Wind +	0.90 Dead		
	Service Conditions	and Load Duration		Max Sh	earwall Offset [ft]
Duration	Temperature	Moistu	ire Content	Plan	Elevation
Factor	Range	Fabrication	Service	(within story)	(between stories)
1.60	T<=100F	24% (>19%)	10% (<=19%)	0.50	-
		Maximum	Height-to-width Ratio	0	
Wood	panels	Fiberboard	Lumber		Gypsum
Blocked	Unblocked		Wind S	Seismic Bloc	ked Unblocked
3.5	2.0	-	-		
	Ignore shear resista	nce contribution of		For	ces based on
Wall	segments	Se	ismic	Hold-downs	Applied loads
Side with inv	valid aspect ratio	Any gypsum, lu	mber, fiberboard	Drag struts	Applied loads
	Shea	rwall relative rigidity	. Wall capacity		
Non-identica	I materials and construc	tion on the shearline	Not allowed		
		Deflection Equation	: 4-term from SDP	WS C4.3.4-1	
	Drift	limit for wind design	1: 1 / 100 story h	eight	
		FTAO strap	: Continuous at t	op of highest open	ing and bottom of lowes

SITE INFORMATION

ASCE 7-16 Dire	Wind ctional (All he	eights)	Seismic ASCE 7-16 12.8 Equivalent Lateral Force Procedure						
Design Wind Speed	95 mph		Risk Category Category II - All others						
Serviceability Wind Speed	100 mph		Structure Type	Regular					
Exposure	Exposure C		Building System	Bearing Wall					
Enclosure	Partially o	pen	Design Category	D					
Min Wind Loads: Walls	16 psf		Site Class	D					
Roofs	8 psf		Spe	ctral Response Acceleration					
Topograp	hic Information [ft]		S1: 0.355g	42g					
Shape	Height	Length	Fundamental Period	E-W	N-S				
_	-	-	T Used	0.133s	0.133s				
Site Location: -			Approximate Ta	0.133s	0.133s				
E	lev: Oft		Maximum T	0.186s	0.186s				
Rigid buildin	ng – Static ana	lysis	Response Factor R	6.50	6.50				
Case 2	E-W loads	N-S loads	Fa: 1.37	Fv: 1.9	5				
Eccentricity (%)	15	15							
Loaded at	75%								

WoodWorks® Shearwalls

23M-007 750 Palisade.wsw Apr. 6, 2023 13:21:32

6

Structural Data

STORY INFORMATION

				Hold-down				
	Story Elev [ft]	Floor/Ceiling Depth [in]	Wall Height [ft]	Length subject to shrinkage [in]	Bolt length [in]			
Ceiling	9.00	0.0						
Level 1	0.00	0.0	9.00	3.75	4.5			
Foundation	0.00							

BLOCK and ROOF INFORMATION

	Block			Roof Panels							
	Dimensions [ft]		Face	Туре	Slope	Overhang [ft]					
Block 1	1 Story	E-W Ridge									
Location X,Y =	0.25	0.25	North	Side	30.8	1.50					
Extent X,Y =	34.50	24.50	South	Side	28.8	1.62					
Ridge Y Location, Offset	13.00	0.50	East	Gable	90.0	1.06					
Ridge Elevation, Height	16.00	7.00	West	Gable	90.0	1.06					

SHEATHING MATERIALS by WALL GROUP

		Sheathing								Fasteners					Apply
Grp	Surf	Material	Ratng	Thick	GU	Ply	Or	Gvtv	Size	Туре	RS	Eg	Fd	Bk	Notes
				in	in			lbs/in				in	in		
1	1	Struct Sh OSB	24/0	3/8	-	-	Horz	77500	8d	Box	N	3	12	Y	2,3
2	Ext	Struct Sh OSB	24/0	3/8	-	-	Horz	77500	8d	Box	Ν	6	12	Υ	3

Legend:

Grp – Wall Design Group number, used to reference wall in other tables (created by program)

Surf - Exterior or interior surface when applied to exterior wall

Ratng – Span rating, see SDPWS Table C4.2.3C

Thick – Nominal panel thickness

GU - Gypsum underlay thickness

Ply – Number of plies (or layers) in construction of plywood sheets

Or - Orientation of longer dimension of sheathing panels or lumber planks. Dbl. = Double diagonal.

Gvtv – Shear stiffness in Ib/in. of depth from SDPWS Tables C4.2.3A-B

Type – Fastener type from SDPWS Tables 4.3A-D:

Common: common wire nail; Box: galvanized box nail; Casing: casing nail; Roof: galvanized roofing nail; Cooler: cooler nail; WBoard: wallboard nail; Screw: drywall screw; Gauge: nail measured by gauge; Galv: galvanized gauge nail; GWB: Gypsum wallboard blued nail

Size - From Tables 4.3A-D and Table A1; shown in Wall Input fastener dropdown

Common nails: $6d = 0.113 \times 2^{"}$, $8d = 0.131 \times 2.5^{"}$, $10d = 0.148 \times 3^{"}$, $12d = 0.148 \times 3.5^{"}$

Box or casing nails: 6d = 0.099 x 2", 8d = 0.113 x 2.5", 10d = 0.128 x 3", 12d = 0.126 x 3.5" Gauge, roofing and GWB nails: 13 ga = 0.92" x 1-1/8"; 11 ga = 0.120" x 1-1/8" (GWB nail for gypsum lath & plaster), 1-1/4" (gyp. L&P), 1-1/2"

(wire lath & plaster, 1/2" fiberboard ,1/2" GWB), 1-3/4" (GSB, 5/8" GWB, 25/32" fiberboard, 2-ply GWB base), 2-3/8" (2-ply GWB face) Cooler or wallboard nail: 5d = .086" x 1-5/8"; 6d = .092" x 1-7/8"; 8d = .113" x 2-3/8"; 6/8d = 6d base ply, 8d face ply for 2-ply GWB. Drywall screws: No. 6, 1-1/4" long.

RS - Ring-shank nails (non-shearwalls only), with increased withdrawal capacity as per NDS 12.2.3.2.

Eg – Panel edge fastener spacing. For lumber sheathing, no. of nails per board at shear wall boundary. For 2-ply GWB, spacing of all nails in face ply.

. Fd – Field spacing interior to panels. For lumber sheathing, no. of nails per board at interior studs. For 2-ply GWB, spacing of all nails in face ply. Bk – Sheathing is nailed to blocking at all panel edges; Y(es) or N(o)

Apply Notes – Notes below table legend which apply to sheathing side

Notes:

2. Framing at adjoining panel edges must be 3" nominal or wider with staggered nailing according to SDPWS 4.3.7.1 (5)

3. Shear capacity for current design has been increased to the value for 15/32" sheathing with same nailing because stud spacing is 16" max. or panel orientation is horizontal. See SDPWS Table 4.3A Note 2.

FRAMING MATERIALS and STANDARD WALL by WALL GROUP

Species	Grade	b	d	Spcg	SG	E	Fcp	Standard Wall
		in	in	in		psi^6		
D.Fir-L	No.1	1.50	5.50	16	0.50	1.70	625	
D.Fir-L	No.2	1.50	5.50	16	0.50	1.60	625	
D.Fir-L	No.2	1.50	5.50	16	0.50	1.60	625	Non Shear Wall
	D.Fir-L D.Fir-L	D.Fir-L No.1 D.Fir-L No.2	in D.Fir-L No.1 1.50 D.Fir-L No.2 1.50	in in D.Fir-L No.1 1.50 5.50 D.Fir-L No.2 1.50 5.50	in in in D.Fir-L No.1 1.50 5.50 16 D.Fir-L No.2 1.50 5.50 16	in in in D.Fir-L No.1 1.50 5.50 16 0.50 D.Fir-L No.2 1.50 5.50 16 0.50	in in psi^6 D.Fir-L No.1 1.50 5.50 16 0.50 1.70 D.Fir-L No.2 1.50 5.50 16 0.50 1.60	in in psi^6 D.Fir-L No.1 1.50 5.50 16 0.50 1.70 625 D.Fir-L No.2 1.50 5.50 16 0.50 1.60 625

Legend:

Wall Grp – Wall Design Group

b – Stud breadth (thickness)

d – Stud depth (width)

Spcg – Maximum on-centre spacing of studs for design, actual spacing may be less.

SG – Specific gravity

E – Modulus of elasticity

Standard Wall - Standard wall designed as group.

Fcp - Compressive strength perpendicular to grain

Notes:

Check manufacture requirements for stud size, grade and specific gravity (G) for all shearwall hold-downs.

The following factors are applied to Fcp for compressive design and deformation under wall segment end studs :

Bearing area factor Cb from NDS 3.10.4, under window openings.

WoodWorks® Shearwalls

8

SHEARLINE, WALL and OPENING DIMENSIONS

Туре	Wall	Location	Exten	t [ft]	Length	FHS	Aspect	Height	Studs
	Group	X [ft]	Start	End	[ft]	[ft]	Ratio	[ft]	S N
	2	0.50	0.25	24.75	24.50	14.50	-	9.00	
NSW		0.25	0.25	24.75	24.50	0.00	-	-	2 2
	-	_				_	-	_	2 2
	-	-	0.25			-	-	9.00	2 2
	-	-	6.00	24.75	18.75	-	-	-	2 2
Prf	2	0.50	6.00	24.50	18.50	14.50	-	-	3 3
	-	-	6.00	16.00	10.00	10.00	0.90	-	
	-	-	16.00	20.00	4.00	4.00	-	3.00	
	-	-	20.00	24.50	4.50	4.50	2.00	-	
	2	34 75	0 25	24 75	24 50	12 96	_	9 00	
Prf							_	-	2 2
	_						2.25	-	
	_	-						1.00	
	-	-						-	
	-	-						1.00	
	_	-						_	
				21.00	2.00	1.10	0.10		
Type	Wall	Location	Exten	t [ft]	Lenath	FHS	Aspect	Heiaht	Studs
11									WΕ
				-					
	1	0 50	0 25	3/ 75	34 50	1 75	_	9 00	
NICIM	Ŧ								2 2
14.5 W									2 2
									2 2
									2 2
									2 2 2 2
									2 2
									2 2
									22
							-	-	2 2
								4 0 0	0 0
	-	-	27.50	32.50	5.00	-	-	4.00	2 2
2	-		27.50 32.50	32.50 34.75	5.00 2.25	-	-	-	2 2
Seg	-	-	27.50	32.50	5.00				
Seg	-		27.50 32.50	32.50 34.75	5.00 2.25	-	-	-	2 2
Seg	- - 1		27.50 32.50	32.50 34.75	5.00 2.25	_ 4.75	-	-	2 2
5	-	- 0.50 24.50	27.50 32.50 22.50 0.25	32.50 34.75 27.50 34.75	5.00 2.25 5.00 34.50	_ 4.75 8.75	_ 1.80 _	- - 9.00	2 2 2 2
Seg NSW	- - 1	_ _ 0.50	27.50 32.50 22.50	32.50 34.75 27.50	5.00 2.25 5.00	_ 4.75	_ 1.80	_	2 2 2 2 2 2
5	- - 1	- 0.50 24.50	27.50 32.50 22.50 0.25	32.50 34.75 27.50 34.75	5.00 2.25 5.00 34.50	_ 4.75 8.75	_ 1.80 _ _ _	- - 9.00	2 2 2 2 2 2 2 2
5	_ 1 2	- 0.50 24.50 24.75	27.50 32.50 22.50 0.25 0.25	32.50 34.75 27.50 34.75 34.75	5.00 2.25 5.00 34.50 34.50	4.75 8.75 0.00	- 1.80 - -	9.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5	- 1 2 -	 0.50 24.50 24.75	27.50 32.50 22.50 0.25 0.25 0.25	32.50 34.75 27.50 34.75 34.75 9.25	5.00 2.25 5.00 34.50 34.50 9.00	4.75 8.75 0.00	_ 1.80 _ _ _	9.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5	- 1 2 -	 0.50 24.50 24.75 	27.50 32.50 22.50 0.25 0.25 0.25 9.25	32.50 34.75 27.50 34.75 34.75 9.25 21.25	5.00 2.25 5.00 34.50 34.50 9.00 12.00	4.75 8.75 0.00 -	- 1.80 - - - -	9.00 - 9.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5	- 1 2 -	 0.50 24.50 24.75 	27.50 32.50 22.50 0.25 0.25 0.25 9.25 21.25	32.50 34.75 27.50 34.75 34.75 9.25 21.25 25.50	5.00 2.25 5.00 34.50 34.50 9.00 12.00 4.25	4.75 8.75 0.00 - -	- 1.80 - - - - -	- 9.00 - 9.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5	- 1 2 - - -	- 0.50 24.50 24.75 - - -	27.50 32.50 22.50 0.25 0.25 9.25 21.25 25.50	32.50 34.75 27.50 34.75 34.75 9.25 21.25 25.50 30.50	5.00 2.25 5.00 34.50 9.00 12.00 4.25 5.00	4.75 8.75 0.00 - - - -	- 1.80 - - - - - -	9.00 - 9.00 - 4.00	2 2 - 2 2 2 2 2
	Type	Type Wall Group NSW - Prf 2 Prf - Prf 2 Prf - - - Prf 2 NSW - - - Prf 2 NSW - - - <t< td=""><td>Type Wall Group Location X [ft] 2 0.50 NSW 0.25 - - - - Prf 2 0.50 Prf 2 0.50 - - - Prf 2 0.50 - - - Prf 2 0.50 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - NSW 1 0.50 NSW - - - - - - - - - - - - - - <tr< td=""><td>Type Wall Group Location X [ft] Exten Start NSW 2 0.50 0.25 NSW 0.25 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.200 Prf 2 34.75 0.25 - - 20.00 Prf 2 34.75 0.25 - - 9.25 - - 17.17 - 22.17 X Xart NSW - 0.25 0.25 - - 0.25 0.25 - - 0.25 0.25</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></tr<></td></t<>	Type Wall Group Location X [ft] 2 0.50 NSW 0.25 - - - - Prf 2 0.50 Prf 2 0.50 - - - Prf 2 0.50 - - - Prf 2 0.50 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - NSW 1 0.50 NSW - - - - - - - - - - - - - - <tr< td=""><td>Type Wall Group Location X [ft] Exten Start NSW 2 0.50 0.25 NSW 0.25 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.200 Prf 2 34.75 0.25 - - 20.00 Prf 2 34.75 0.25 - - 9.25 - - 17.17 - 22.17 X Xart NSW - 0.25 0.25 - - 0.25 0.25 - - 0.25 0.25</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></tr<>	Type Wall Group Location X [ft] Exten Start NSW 2 0.50 0.25 NSW 0.25 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.200 Prf 2 34.75 0.25 - - 20.00 Prf 2 34.75 0.25 - - 9.25 - - 17.17 - 22.17 X Xart NSW - 0.25 0.25 - - 0.25 0.25 - - 0.25 0.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Legend:

Type – Seg = Segmented, Prf = Perforated, FT = FTAO (force transfer around openings), NSW = non-shearwall

Location – Position in structure perpendicular to wall

Length - Shear line: Distance between exterior perpendicular walls defining the shear line extent

Wall, segment, or opening: End-to-end length of the element

FHS – Depending on element, shows different definitions of full-height sheathing length (FHS):

Shear lines with multiple walls, segmented walls, or FTAO walls: Total shear-resisting FHS

Individual wall segments or walls without openings: Distance between hold-downs beff

Perforated walls: Sum of factored segment lengths bi defined in SDPWS 4.3.5.6

Aspect Ratio – Ratio of wall height to segment length (h/b); for FTAO walls, the aspect ratio of the central pier

Wall Group – Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall

Studs: Number of end studs at the south and north or west and east ends of a wall segment or a perforated or FTAO wall.

WoodWorks® Shearwalls

23M-007 750 Palisade.wsw Apr. 6, 2023 13:21:32

Loads

WIND SHEAR LOADS (as entered or generated)

Level 1									Magnitu	de	Trib
Block	F	Element	Load	Wnd	Surf	Prof	Locatio	n [ft]	[lbs,plf,p	osf]	Ht
			Case	Dir	Dir		Start	End	Start	End	[ft]
					··· 1		0.05	04 75	0.0		4 50
Block 1	W	Wall	Min	W->E	Wind	Area	0.25	24.75	8.0 0.0	11 0	4.50
Block 1	W	L Gable	1	W->E	Wind	Area	0.25	13.00		11.3	7.00
Block 1	W	L Gable	Min	W->E	Wind	Area	0.25	13.00	0.0	8.0	7.00
Block 1	W	Wall	1	W->E	Wind	Area	0.25	24.75	11.3		4.50
Block 1	W	R Gable	1	W -> E	Wind	Area	13.00	24.75	11.3	0.0	7.00
Block 1	W	R Gable	Min	W -> E	Wind	Area	13.00	24.75	8.0	0.0	7.00
Block 1	E	L Gable	1	$W - \geq E$	Lee	Area	0.25	13.00	0.0	5.9	7.00
Block 1	E	L Gable	Min	W->E	Lee	Area	0.25	13.00	0.0	8.0	7.00
Block 1	E	Wall	Min	W -> E	Lee	Area	0.25	24.75	8.0		4.50
Block 1	E	Wall	1	W - > E	Lee	Area	0.25	24.75	5.9		4.50
Block 1	E	R Gable	Min	W -> E	Lee	Area	13.00	24.75	8.0	0.0	7.00
Block 1	E	R Gable	1	W->E	Lee	Area	13.00	24.75	5.9	0.0	7.00
Block 1	W	L Gable	1	E -> W	Lee	Area	0.25	13.00	0.0	5.9	7.00
Block 1	W	L Gable	Min	E->W	Lee	Area	0.25	13.00	0.0	8.0	7.00
Block 1	W	Wall	Min	E->W	Lee	Area	0.25	24.75	8.0		4.50
Block 1	W	Wall	1	E->W	Lee	Area	0.25	24.75	5.9		4.50
Block 1	W	R Gable	1	E->W	Lee	Area	13.00	24.75	5.9	0.0	7.00
Block 1	W	R Gable	Min	E->W	Lee	Area	13.00	24.75	8.0	0.0	7.00
Block 1	E	Wall	1	E->W	Wind	Area	0.25	24.75	11.3		4.50
Block 1	E	L Gable	1	E->W	Wind	Area	0.25	13.00	0.0	11.3	7.00
Block 1	E	Wall	Min	E->W	Wind	Area	0.25	24.75	8.0		4.50
Block 1	E	L Gable	Min	E->W	Wind	Area	0.25	13.00	0.0	8.0	7.00
Block 1	E	R Gable	Min	E->W	Wind	Area	13.00	24.75	8.0	0.0	7.00
Block 1	Ē	R Gable	1	E->W	Wind	Area	13.00	24.75	11.3	0.0	7.00
Block 1	S	Roof	Min	S->N	Wind	Area	-0.81	35.81	4.3	0.0	7.89
Block 1	S	Roof	1	S->N	Wind	Area	-0.81	35.81	2.8		7.89
Block 1	S	Wall	1	S->N	Wind	Area	0.25	34.75	11.3		4.50
Block 1	S	Wall	Min	S->N	Wind	Area	0.25	34.75	8.0		4.50
Block 1	N	Roof	1	S->N	Lee	Area	-0.81	35.81	8.5		7.89
Block 1	N	Roof	Min	S->N	Lee	Area	-0.81	35.81	4.0		7.89
Block 1	N	Wall	1	S->N	Lee	Area	0.25	34.75	7.1		4.50
Block 1	N	Wall	Min	S->N	Lee	Area	0.25	34.75	8.0		4.50
Block 1	S	Roof	1	N->S	Lee	Area	-0.81	35.81	8.5		7.89
Block 1	S	Roof	Min	N->S	Lee	Area	-0.81	35.81	4.3		7.89
Block 1	S	Wall	M111 1	N->S N->S			0.25	34.75	4.3 7.1		4.50
Block 1	S	Wall	 Min	N->S N->S	Lee Lee	Area Area	0.25	34.75	8.0		4.50
Block 1	N	Roof	1	N->S	Wind	Area	-0.81	35.81	3.1		7.89
Block 1	N	Roof	Min	N->S	Wind	Area	-0.81	35.81	4.0		7.89
Block 1	N	Wall	1	N->S	Wind	Area	0.25	34.75	11.3		4.50
Block 1	N	Wall	Min	N->S	Wind	Area	0.25	34.75	8.0		4.50

Legend:

Block - Block used in load generation

Accum. = loads from one block combined with another

Manual = user-entered loads (so no block)

F - Building face (north, south, east or west)

Element - Building surface on which loads generated or entered

Load Case - One of the following:

ASCE 7 All Heights: Case 1 or 2 from Fig 27.3-8 or minimum loads from 27.1.5

ASCE 7 Low-rise: Reference corner and Case A or B from Fig 28.3-1 or minimum loads from 28.3.4

Wind Dir - Direction of wind for loads with positive magnitude, also direction of MWFRS.

Surf Dir - Windward or leeward side of the building for loads in given direction

Prof - Profile (distribution)

Location - Start and end points on building element

Magnitude - Start = intensity of uniform and point loads or leftmost intensity of trapezoidal load, End = right intensity of trap load Trib Ht - Tributary height of area loads only

Notes:

All loads entered by the user or generated by program are specified (unfactored) loads. The program applies a load factor of 0.60 to wind loads before distributing them to the shearlines.

WIND C&C LOADS

Block 1 Block 1	Face	Direction		Interior	End Zone
Block 1 Block 1					
Block 1 Block 1					
Block 1 Block 1	West	Windward	1	21.3	26.3
Block 1 Block 1	West	Windward	1	21.3	26.3
Block 1 Block 1	West	Windward	1	21.3	26.3
Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1	West	Windward	1	21.3	26.3
Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1	East	Leeward	1	21.3	26.3
Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1	East	Leeward	1	21.3	26.3
Block 1 Block 1 Block 1 Block 1 Block 1 Block 1 Block 1	East	Leeward	1	21.3	26.3
Block 1 Block 1 Block 1 Block 1 Block 1 Block 1	East	Leeward	1	21.3	26.3
Block 1 Block 1 Block 1 Block 1 Block 1	West	Leeward	1	21.3	26.3
Block 1 Block 1 Block 1 Block 1	West	Leeward	1	21.3	26.3
Block 1 Block 1 Block 1	West	Leeward	1	21.3	26.3
Block 1 Block 1	West	Leeward	1	21.3	26.3
Block 1	East	Windward	1	21.3	26.3
Block 1	East	Windward	1	21.3	26.3
	East	Windward	1	21.3	26.3
	East	Windward	1	21.3	26.3
	South	Windward	1	21.3	26.3
	South	Windward	1	21.3	26.3
	South	Windward	1	21.3	26.3
	South	Windward	1	21.3	26.3
	North	Leeward	1	21.3	26.3
	North	Leeward	1	21.3	26.3
	North	Leeward	1	21.3	26.3
	North	Leeward	1	21.3	26.3
	South	Leeward	1	21.3	26.3
	South	Leeward	1	21.3	26.3
	South	Leeward	1	21.3	26.3
	South	Leeward	1	21.3	26.3
	North	Windward	1	21.3	26.3
	North	Windward	1	21.3	26.3
	North	Windward	1	21.3	26.3
21001 1	North	Windward	1	21.3	26.3

DEAD LOADS (for hold-down calculations)

Shear	Level	Profile	Tributary	Locatio	on [ft]	Mag [lbs,p	osf,psi]
Line			Width [ft]	Start	End	Start	End
A	1	Line		0.25	34.75	135.0*	
A	1	Line		22.50	27.50	54.0*	
В	1	Line		0.25	34.75	135.0*	
В	1	Line		0.25	34.75	400.0	
В	1	Line		0.50	9.50	400.0	
В	1	Line		0.50	9.50	54.0*	
1	1	Line		0.25	24.75	135.0*	
1	1	Line		0.25	24.75	200.0	
1	1	Line		6.00	24.50	54.0*	
1	1	Line		6.00	24.50	200.0	
2	1	Line		0.25	24.75	135.0*	
2	1	Line		0.25	24.75	400.0	

BUILDING MASSES

Level 1 Force Building Dir Element		51 1					Magni		Trib
	•	Block	Wall	Profile	Locatio		[lbs,plf		Width
Dir	Element		Line		Start	End	Start	End	[ft]
E - W	Snow	Block 1		Line	-1.37	26.25	109.9	109.9	
E - W	Snow	Block 1	2	Line	-1.37	26.25	109.9	109.9	
E - W	Roof	Block 1		Line	-1.37	26.25	366.2	366.2	
E - W	Roof	Block 1	2	Line	-1.37	26.25	366.2	366.2	
E-W	R Gable	Block 1		Line	0.25	13.00	105.0	0.0	
E - W	L Gable	Block 1		Line	13.00	24.75	0.0	105.0	
E - W	L Gable	Block 1	2	Line	0.25	13.00	105.0	0.0	
E-W	R Gable	Block 1	2	Line	13.00	24.75	0.0	105.0	
N-S	Snow	Block 1		Line	-0.81	35.81	83.2	83.2	
N-S	Snow	Block 1		Line	-0.81	35.81	82.5	82.5	
N-S	Roof	Block 1		Line	-0.81	35.81	277.5	277.5	
N-S	Roof	Block 1		Line	-0.81	35.81	274.9	274.9	
Both	Wall 1-1	n/a		Line	0.25	24.75	67.5	67.5	
Both	Wall 1-2	n/a	1	Line	6.00	24.50	27.0	27.0	
Both	Wall 2-1	n/a	2	Line	0.25	24.75	67.5	67.5	
Both	Wall A-1	n/a		Line	0.25	34.75	67.5	67.5	
Both	Wall A-2	n/a	A	Line	22.50	27.50	27.0	27.0	
Both	Wall B-2	n/a	В	Line	0.50	9.50	27.0	27.0	
Both	Wall B-1	n/a		Line	0.25	34.75	67.5	67.5	

Legend:

Force Dir - Direction in which the mass is used for seismic load generation, E-W, N-S, or Both

Building element - Roof, gable end, wall or floor area used to generate mass, wall line for user-applied masses, Floor F# - refer to Plan View for floor area number

Wall line - Shearline that equivalent line load is assigned to

Location - Start and end points of equivalent line load on wall line

Trib Width. - Tributary width; for user applied area loads only

SEISMIC LOADS

Level 1					
Force	Profile	Locatio	n [ft]	Mag [lbs,p	lf,psf]
Dir		Start	End	Start	End
E - W	Line	-1.37	0.25	112.7	112.7
E-W	Point	0.25	0.25	276	276
E-W	Line	0.25	6.00	128.6	139.8
E - W	Point	0.50	0.50	16	16
E - W	Line	6.00	13.00	143.0	156.7
E - W	Line	13.00	24.50	156.7	132.4
E-W	Point	24.50	24.50	29	29
E-W	Line	24.50	24.75	129.2	128.6
E-W	Point	24.75	24.75	276	276
E-W	Line	24.75	26.25	112.7	112.7
N-S	Line	-0.81	0.25	85.0	85.0
N-S	Point	0.25	0.25	348	348
N-S	Line	0.25	0.50	100.9	100.9
N-S	Point	0.50	0.50	59	59
N-S	Line	0.50	9.50	104.1	104.1
N-S	Line	9.50	22.50	100.9	100.9
N-S	Line	22.50	27.50	104.1	104.1
N-S	Line	27.50	34.75	100.9	100.9
N-S	Point	34.75	34.75	348	348
N-S	Line	34.75	35.81	85.0	85.0

Legend:

Loads in table can be accumulation of loads from several building masses, so they do not correspond with a particular building element. Location - Start and end of load in direction perpendicular to seismic force direction

Notes:

All loads entered by the user or generated by program are specified (unfactored) loads. The program applies a load factor of 0.70 and redundancy factor to seismic loads before distributing them to the shearlines.

Design Summary

SHEARWALL DESIGN

Wind Shear Loads, Flexible Diaphragm All shearwalls have sufficient design capacity.

Components and Cladding Wind Loads, Out-of-plane Sheathing All shearwalls have sufficient design capacity.

Components and Cladding Wind Loads, Nail Withdrawal All shearwalls have sufficient design capacity.

Seismic Loads, Flexible Diaphragm

All shearwalls have sufficient design capacity.

HOLD-DOWN DESIGN

Wind Loads, Flexible Diaphragm

All hold-downs have sufficient design capacity.

Seismic Loads, Flexible Diaphragm

All hold-downs have sufficient design capacity.

COMPRESSION FORCE DESIGN

Wind Loads, Flexible Diaphragm

Bottom plate has sufficient perpendicular-to-grain compressive capacity under all wall end studs.

Seismic Loads, Flexible Diaphragm

Bottom plate has sufficient perpendicular-to-grain compressive capacity under all wall end studs.

This Design Summary does not include failures that occur due to excessive story drift from ASCE 7 CC.2.2 (wind) or 12.12 (seismic). Refer to Story Drift table in this report to verify this design criterion. Refer to the Deflection table for possible issues regarding fastener slippage (SDPWS Table C4.2.3D).

Flexible Diaphragm Wind Design ASCE 7 Directional (All Heights) Loads

SHEAR RESULTS

N-S	W	For	ASD	Shear Force	e [plf]	Asp	-Cub		Alle	owable \$	Shea	r [plf]		Resp.
Shearlines	Gp	Dir	v	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Со	С	Cmb	V [lbs]	Ratio
Line 1														
Level 1														
Ln1, Lev1	2	S->N	127.8	127.8	1852	-	1.0	-	365	1.00		365	5293	0.35
	2	N->S	129.2	129.2	1873	-	1.0	-	365	1.00		365	5293	0.35
Line 2														
Ln2, Lev1	2	S->N	126.0	141.0	1827	-	.89	-	326	1.00		326	4729	0.39
	2	N->S	127.4	142.5	1847	-	.89	-	326	1.00		326	4729	0.39
E-W	W	For	ASD	Shear Force	fla]	Asp	-Cub		Alle	owable	Shea	r [plf]		Resp.
Shearlines	Gp	Dir	v	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Со	С	Cmb	V [lbs]	Ratio
Line A														
Level 1														
LnA, Lev1	-	Both	-	-	1009	-	-	-	685	-		-	3425	-
Wall A-2	1	Both	201.8	-	1009	-	1.0	-	685	-		685	3425	0.29
Line B		1												
Line B	_	Both	_	_	1021	-	_	_	365	_		_	3285	-
	- 2	Both Both	_ 113.5	- -	1021 1021	-	_ 1.0	-	365 365	-		_ 365	3285 3285	- 0.31

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir - Direction of wind force along shearline.

v - Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS)

vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.3.4

FTAO walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers.

V – ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.5.3. For segment or FTAO pier: Aspect ratio factor from SDPWS 4.3.5.5.1. For perforated wall: Either Cub or sum bi / FHS, where bi is segment length adjusted per SDPWS 4.3.3.4.

Int, Ext - Nominal unit shear capacity of interior and exterior sheathing, factored by Table 4.3-1 Note 3 for framing specific gravity and Note 10 for presence of hold-downs. For wall segments, also include unblocked factor Cub and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-6.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using Eqns. 4.3-3,-4.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V – Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "S" indicates that the seismic design criterion was critical in selecting wall.

Notes:

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,1.

Level 1						Tensile Ho	ld-down				
Line-		Locati	ion [ft]	Load	or Com	pressive S	Stud Force	[lbs]		Cap	Crit
Wall	Posit'n	Х	Ŷ	Case	Shear	Dead	Uplift	Cmb'd	Hold-down	[lbs]	Resp.
Line 1							-				
	V Elem	0.25	0.12	1	0	575		575	Compression		
1-2	L End	0.50	6.13	1	-1183	11545		12727	Compression	15469	0.82
1-2	R End	0.50	24.38	1	-1170	5448		6618	Compression	15469	0.43
1-1	R End	0.25	24.63	1	0	5459		5459	Compression		-
Line 2											
2-1	L End	34.75	0.38	1	-1818	6554		8372	Compression	10312	0.81
2-1	R End	34.75	24.63	1	-1798	6554		8352	Compression	10312	0.81
Line A					[
	V Elem	8.21	0.25	1	0	152		152	Compression		
	V Elem	10.21	0.25	1	0	152		152	Compression		
A-1	R Op 2	16.46	0.25	1	0	214		214	Compression		_
A-1	L Op 3	19.38	0.25	1	0	214		214	Compression		_
A-2	L End	22.63	0.50	1	1912	567		1345	HDU5-SDS	5645	0.24
A-2	L End	22.63	0.50	1	-1912	945		2857	Compression	10312	0.28
A-2	R End	27.38	0.50	1	1912	567		1345	HDU5-SDS	5645	0.24
A-2	R End	27.38	0.50	1	-1912	945		2857	Compression	10312	0.28
	V Elem	32.62	0.25	1	0	152		152	Compression		
	V Elem	34.63	0.25	1	0	152		152	Compression		
Line B					[
B-1	L End	0.38	24.75	1	0	-320		320			
в-2	L End	0.63	24.50	1	-1050	4451		5501	Compression	10312	0.53
B-1	L Op 2	9.13	24.75	1	0	15225		15225	Compression		-
B-2	R End	9.38	24.50	1	-1050	4451		5501	Compression	10312	0.53
B-1	R Op 2	21.38	24.75	1	0	9594		9594	Compression		-
B-1	L Op 2	25.38	24.75	1	0	-1602		1602			
B-1	R Op 2	30.63	24.75	1	0	2137		2137	Compression		-
B-1	R End	34.63	24.75	1	0	1137		1137	Compression		_

Hold-Down and Compression Design (flexible wind design)

Legend:

Line-Wall:

At wall or opening - Shearline and wall number

At vertical element – Shearline

Posit'n – Position of stud pack that hold-down is attached to or which is applying compression force:

V Elem – Vertical element: column or strengthened studs required where not at wall end or opening

L or R End – At left or right wall end

L or R Op n - At left or right side of opening n

t @ Op n – Uplift force t at opening n from offset opening in perforated wall above, from SDPWS 4.3.6.4.2.1

Location – Co-ordinates in Plan View

Load Case – Results are for critical load case:

ASCE 7 All Heights: Case 1 or 2 from Fig. 27.3-8

ASCE 7 Low-rise: Windward corner(s) and Case A or B from Fig. 28.3-1

ASCE 7 Minimum loads (27.1.5 / 28.3.4): "Min'

Tensile Hold-down or Compressive Stud Force – Upwards force on hold-down at one end of the wall or downward force on bottom plate under studs at the other end, for each force direction. Includes forces transferred from upper levels.

Shear – Overturning component = V x h / beff from SDPWS Eqn. 4.3-7; V = force on segment, ASD-factored by 0.60; h = wall height, beff = wall segment length – (tension stud pack width + hold-down anchor bolt offset) – (1/2 compression stud pack width). For perforated walls = V x h / Co sum (bi) from SDPWS Eqn. 4.3-8.

Dead – Dead load resisting component, factored for ASD by 0.60 for tension and 1.0 for compression

Uplift – Uplift wind load component, factored for ASD by 0.60

Cmb'd – Sum of ASD-factored overturning, dead and uplift forces. May also include the uplift force t from perforated walls from SDPWS 4.3.6.4.2.1 when openings are staggered.

Hold-down – Device model number from hold-down database; "Compression" for bearing of end stud pack on bottom plate

Cap – Hold-downs: Allowable ASD tension load from database; Compression: allowable ASD bearing force = Ct CM Cb Fcp A; A = cross sectional area of end studs. Refer to Framing materials table for details

Crit. Resp. - Critical Response = Combined ASD force / Allowable ASD tension load

Notes:

HDU5-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5" : Uses 14 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

Refer to the Shear Line Dimensions table for wall height h, effective segment length beff and perforated wall adjusted sum of bi, to the Story Table for joist depth, and to the Shear Results table for perforated factor Co.

Most severe of wind load cases is used for overturning calculation.

Designer is responsible for design of connection from wall to floor or foundation for shear force shown in Shear Results table. Refer to SDPWS 4.3.6.4.3 for foundation anchor bolt requirements.

COLLECTOR FORCES (flexible wind design)

Level 1					Drag S	Strut	Strap/Blockin	ig
Line-	Position on Wall	Locatio	n [ft]	Load	Force		Force [lbs]	-
Wall	or Opening	X	Y	Case	>	1	> <	
Line 1	· •							
1-2	Left Wall End	0.50	6.00		-435	440		
1-2	Left Opening 1	0.50	16.00		87	-88		
1-2	Right Opening 1	0.50	20.00		-216	218		
1-2	Right Wall End	0.50	24.50		19	-19		
Line 2	-							
2-1	Left Opening 1	34.75	4.25		266	-269		
2-1	Right Opening 1	34.75	9.25		-239	242		
2-1	Left Opening 2	34.75	17.17		287	-290		
2-1	Right Opening 2	34.75	22.17		-172	174		
Line A								
A-2	Left Wall End	22.50	0.50		-651	651		
A-2	Right Wall End	27.50	0.50		212	-212		
Line B	2				1			
в-2	Left Wall End	0.50	24.50		-7	7		
в-2	Right Wall End	9.50	24.50		748	-748		
	-					Í		

Legend:

Line-Wall - Shearline and wall number

Position ...- Side of opening or wall end that drag strut is attached to

Location - Co-ordinates in Plan View

Load Case - Results are for critical load case:

ASCE 7 All heights Case 1 or 2

ASCE 7 Low-rise corner; Case A or B

Drag strut Force - Axial force in transfer element at openings, gaps, or changes in design shear along shearline. + : tension; - : compression. Based on ASD-factored shearline force (vmax from 4.3.6.4.1.1 for perforated walls)

Strap/Blocking Force - For FTAO walls, force transferred from above and below opening to shearwall pier.

-> Due to shearline force in the west-to-east or south-to-north direction

<- Due to shearline force in the east-to-west or north-to-south direction

Job #23M-007 749 Palisade

MWFRS DEFLECTION (flexible wind design)

These deflections are used to determine shearwall stiffness for force distribution

Wall,	W						Bend	ling	Shear		Nail slip		Hold	Total
segment	Gp	Dir	Srf	v	b	h	Α	Defl	Defl	Vn	en	Defl	Defl	Defl
_				plf	ft	ft	sq.in	in	in	lbs	in	in	in	in
Level 1														
Line 1														
1-2	2	S->N	1	127.8	14.50	9.00	24.8	.001	.015	64	.009	.063	0.01	0.09
		N->S	1	129.2	14.50	9.00	24.8	.001	.015	65	.010	.065	0.02	0.10
Line 2														
2-1	2	S->N	Ext	141.0	12.96	9.00	16.5	.002	.016	70	.011	.076	0.02	0.11
		N->S	Ext	142.5	12.96	9.00	16.5	.002	.017	71	.011	.078	0.02	0.12
Line A														
A-2	1	Both	1	201.8	5.00	9.00	16.5	.008	.023	50	.006	.041	0.27	0.34
Line B														
в-2	2	Both	1	113.5	9.00	9.00	16.5	.003	.013	57	.008	.051	0.02	0.08

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B.

W Gp – Wall design group, refer to Sheathing and Framing Materials tables.

Dir – Force direction.

Srf – Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions.

v – ASD shear force per unit distance on wall segment.

Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table. Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b - Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h – Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged. Defl – Horizontal shear wall deflection due to given term:

Bending = 8vh^3 / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table For i studs at one end and j at the other, $A = 2 (i^2 j + j^2 i) / (i + j)^2 x$ area of one stud, based on Ex. C4.3.4-3

Shear = vh / Gvtv; Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table.

Nail slip = $0.75 \text{ h} \times \text{en}$; en from Table C4.2.3D, of form aVn^h for WSP, varies linearly to published value for other materials. Vn – ASD shear force per nail along panel edge.

Hold – Anchorage system (hold-down) = da x h / beff.

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl – Deflection from bending + shear + nail slip + hold-down, as per Eqn. 4.3-2.

For FTAO walls, the average of the values for the segments, as per APA T555.

SERVICEABILITY DEFLECTION (flexible wind design)

These deflections are used to determine story drift

Wall,	W						Bend	ling	Shear		Nail slip		Hold	Total
segment	Gp	Dir	Srf	v	b	h	Α	Defl	Defl	Vn	en	Defl	Defl	Defl
-				plf	ft	ft	sq.in	in	in	lbs	in	in	in	in
Level 1														
Line 1														
1-2	2	S->N	1	235.9	14.50	9.00	24.8	.002	.027	118	.029	.199	0.01	0.24
		N->S	1	238.5	14.50	9.00	24.8	.002	.028	119	.030	.203	0.02	0.26
Line 2														
2-1	2	S->N	Ext	260.4	12.96	9.00	16.5	.004	.030	130	.035	.239	0.03	0.30
		N->S	Ext	263.2	12.96	9.00	16.5	.004	.031	132	.036	.244	0.03	0.31
Line A														
A-2	1	Both	1	372.7	5.00	9.00	16.5	.015	.043	93	.019	.128	0.32	0.50
Line B														
в-2	2	Both	1	209.6	9.00	9.00	16.5	.005	.024	105	.024	.159	0.02	0.21

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B.

W Gp – Wall design group, refer to Sheathing and Framing Materials tables.

Dir – Force direction.

Srf – Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions.

v – Shear force per unit distance on wall segment using 1.0 Wa = wind load based on serviceability wind speeds from ASCE 7 CC.2.2, Figs. CC.2-1 - CC.2-4.

Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table.

Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b – Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h – Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged. Defl – Horizontal shear wall deflection due to given term:

Bending = $8vh^3$ / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table For i studs at one end and j at the other, A = 2 (i^2 j + j^2 i) / (i + j)^2 x area of one stud, based on Ex. C4.3.4-3

Shear = vh / Gvtv; Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table.

Nail slip = 0.75 h x en; en from Table C4.2.3D, of form aVn^b for WSP, varies linearly to published value for other materials.

Vn – Serviceability shear force per nail along panel edge.

Hold – Anchorage system (hold-down) = da x h / beff.

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl – Deflection from bending + shear + nail slip + hold-down, as per Eqn. 4.3-2.

For FTAO walls, the average of the values for the segments, as per APA T555.

Wall,		Hold-	Tensio n	Vert.	Displace	ement	Slip	page	Shrink	Comp.	Crush	Total	Horz
segment	Dir	down	force	Manuf	Add	da	Vf	da	+Extra	force	da	da	Defl
			lbs	in	in	in	lbs	in	in	lbs	in	in	in
Level 1													
Line 1			1										
1-2	S->N	HDU2-SDS	-5757	.000	.000	0.000	-	-	.000	6618	0.01	0.01	0.01
	N->S	HDU2-SDS	-2086	.000	.000	0.000	-	-	.000	12727	0.03	0.03	0.02
Line 2			1										
2-1	S->N	HDU2-SDS	-2134	.000	.000	0.000	-	-	.000	8352	0.03	0.03	0.02
	N->S	HDU2-SDS	-2114	.000	.000	0.000	-	-	.000	8372	0.03	0.03	0.02
Line A			1										
A-2	Both	HDU5-SDS	1345	.027	.000	0.027	-	-	.105	2857	0.01	0.14	0.27
Line B			1										
в-2	Both	HDU2-SDS	-1620	.000	.000	0.000	-	-	.000	5501	0.01	0.01	0.02

MWFRS HOLD-DOWN DISPLACEMENT (flexible wind design)

These displacements are used to determine deflections for force distribution

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B

Dir – Force direction

Tens., Comp. force – Accumulated ASD hold-down tension force T and end stud compression force C from overturning, dead loads and wind uplift da – Vertical displacements due to the following components:

Vert. Displacement – Elongation when slippage calculated separately; displacement when combined elongation/slippage used

Manuf – Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD uplift force / ASD hold-down capacity) x max ASD elongation or displacement

* - Maximum strength-level elongation or displacement is used. May result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es)

Ab = bolt cross-sectional area

Es = steel modulus = 29000000 psi

L = Lb - Lh

Lb = Total bolt length shown in Storey Information table

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage – Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = Vf / (270,000 D^1.5) (NDS 11.3.6); D = bolt diameter, Vf = Tension force T / number of fasteners

Shrink + Extra – Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (24% fabrication – 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table

Crush – Deformation of bottom plate at compression end of wall segment

 $= 0.02" \times [r/0.73, r < 0.73; (1 + (r - 0.73)/0.27), 0.73 < r < 1; 2r^3, r > 1]$

r = fcp / Fcp'; Fcp' = Ct CM Fcp; fcp = C / A, A = cross sectional area of end studs

Total da – Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl – Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) h and b are shown in Deflection table, beff in the Shear Wall Dimensions table

Wall,		Hold-	Tensio n	Vert.	Displace	ement	Slip	bage	Shrink	Comp.	Crush	Total	Horz
segment	Dir	down	force lbs	Manuf in	Add in	da in	Vf Ibs	da in	+Extra in	force Ibs	da in	da in	Defl in
Level 1													
Line 1													
1-2	S->N N->S	HDU2-SDS HDU2-SDS	-10631 -3853	.000	.000	0.000	-	-	.000	8197 14976	0.01 0.04	0.01 0.04	0.01 0.02
Line 2			ĺ										
2-1	S->N	HDU2-SDS	-3940	.000	.000	0.000	-	-	.000	10583	0.04	0.04	0.03
	N->S	HDU2-SDS	-3904	.000	.000	0.000	-	-	.000	10619	0.04	0.04	0.03
Line A A-2	Both	HDU5-SDS	2483	.051	.000	0.051	-	-	.105	4578	0.01	0.17	0.32
Line B B-2	Both	HDU2-SDS	-2991	.000	.000	0.000	-	-	.000	6871	0.02	0.02	0.02

SERVICEABILITY HOLD-DOWN DISPLACEMENT (flexible wind design) These displacements are used to determine deflections for story drift

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B

Dir – Force direction

Tens., Comp. force – Accumulated hold-down tension force T and end stud compression force C from overturning, dead loads and wind uplift using load combination D + Wa from ASCE 7 CC.2.2

Wa = wind load based on serviceability wind speeds from ASCE 7 CC.2.2, Figs. CC.2-1 - CC.2-4

da – Vertical displacements due to the following components:

Vert. Displacement – Elongation when slippage calculated separately; displacement when combined elongation/slippage used Manuf – Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD uplift force / ASD hold-down capacity) x max strength-level elongation or displacement

* - Maximum strength-level elongation or displacement is used. May result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es) Ab = bolt cross-sectional area

Es = steel modulus = 29000000 psi

L = Lb - Lh

Lb = Total bolt length shown in Storey Information table

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage – Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = Vf / (270,000 D^1.5) (NDS 11.3.6); D = bolt diameter, Vf = Tension force T / number of fasteners

Shrink + Extra – Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (24% fabrication – 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table

Crush – Deformation of bottom plate at compression end of wall segment

 $= 0.02" x [r/0.73, r < 0.73; (1 + (r - 0.73)/0.27), 0.73 < r < 1; 2 r^3, r > 1]$

r = fcp / Fcp'; Fcp' = Ct CM Fcp; fcp = C / A, A = cross sectional area of end studs

Total da – Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl – Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) h and b are shown in Deflection table, beff in the Shear Wall Dimensions table

STORY DRIFT (flexible wind design)

		Wall	Actual Sto	ry Drift (in)	Allow	able Story I	Drift
Level	Dir	height	Max	Line	hs	Drift	Ratio
		ft	defl		ft	in	
1		9.00			9.00		
	N<->S		0.31	2		1.08	0.29
	E<->W		0.50	A		1.08	0.47

Legend:

Max defl – Largest deflection for any shearline on level in this direction; refer to Serviceability Deflections table Line – Shearline with largest deflection on level in this direction

hs – Story height = Height of walls plus joist depth between this level and the one above.

Drift = Allowable story drift on this level = story height / 100

Ratio - Proportion of allowable story drift experienced, on this level in this direction.

Out-of-plane Wind Design

COMPONENTS AND CLADDING by SHEARLINE

N	orth-Sou	th	Sh	eathing [ps	f]		Faster	er Withdra	wal [lbs]		Service	e Cond
S	Shearline	s	Force	Cap	Force/	For	се	Сар	Force	/Cap	Fact	tors
Line	Lev	Grp		-	Сар	End	Int	-	End	Int	Temp	Moist
1 2	1 1	2 2	15.8 15.8	178.1 178.1	0.09 0.09	21.1 21.1	17.1 17.1	23.4 23.4	0.90 0.90	0.73 0.73	1.00	0.25 0.25
	East-Wes Shearline	-	Sh Force	eathing [ps Cap	f] Force/	For		er Withdra Cap	wal [lbs] Force/	Cap	Service Fac	e Cond tors
Line	Lev	Grp			Сар	End	Int		End	Int	Temp	Moist
A B	1 1	2 2	15.8 15.8	178.1 178.1	0.09 0.09	21.1 21.1	17.1 17.1	23.4 23.4	0.90 0.90	0.73 0.73	1.00 1.00	0.25 0.25

Legend:

Grp - Wall Design Group (results for all design groups for rigid, flexible design listed for each wall) Sheathing:

Force - C&C end zone exterior pressures using negative (suction) coefficient in ASCE 7 Figure 30.3-1 added to interior pressure using coefficients from Table 26.13-1

Cap - Out-of-plane capacity of exterior sheathing from SDPWS Tables 3.2.1A/B, divided by 1.6 for short-term ASD loads as per 3.2.1. Assumes continuous over 2 spans (table note 3).

Fastener Withdrawal:

Force - Force tributary to each nail in end zone and interior zone

Cap - Factored withdrawal capacity of individual nail according to NDS 12.2-3

WoodWorks® Shearwalls

Flexible Diaphragm Seismic Design

SEISMIC INFORMATION

Level	Mass	Area	Story Shear Fx [lbs]		Shear Resis E-W		Diaphragm Force [lbs]					
	[lbs]	[sq.ft]	E-W	E-W N-S		N-S	E-W		N-S			
							Fpx	Design	Fpx	Design		
1 All	37713 37713	845.3 -	3123 4462	3123 4462	4793 -	7158 -	4060 -	4060 _	4060 _	4060		

Legend:

Mass – Sum of all generated and input building masses on level = wx in ASCE 7 Eqn. 12.8-12.

Story Shear - Total ASD-factored shear force induced at level x from Eqn. 12.8-11.

Shear Resistance – Lateral design strength of all shear-resisting elements on story, for use in weak story evaluation (4.1.8).

Diaphragm Force – used by Shearwalls only for drag strut forces, as per Exception to 12.10.2.1.

Fpx - Minimum ASD-factored force for diaphragm design from Eqns. 12.10-1, -2, and -3.

Design = The greater of the story shear and Fpx + transfer forces from discontinuous shearlines, factored by overstrength (omega) as per 12.10.1.1. Omega = 2.5 as per 12.2-1.

Redundancy Factor p (rho):

E-W 1.30, N-S 1.00

Automatically calculated according to ASCE 7 12.3.4.2.

Applies to shearwall design, hold-down forces and the drag strut force component based on shearline forces; does not apply to story drift, out-ofplane force, or the diaphragm force Fpx and the drag strut force component based on it.

Vertical Earthquake Load Ev

Ev = 0.2 Sds D; Sds = 0.77; Ev = 0.154 D unfactored; 0.108 D factored; total dead load factor: 0.6 - 0.108 = 0.492 tension, 1.0 + 0.108 = 1.108 compression.

SHEAR RESULTS (flexible seismic design)

N-S	W	For	ASD	Shear Force	e [plf]	Asp	-Cub		Alle	owable \$	Shea	r [plf]		Resp.
Shearlines	Gp	Dir	v	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Со	С	Cmb	V [lbs]	Ratio
Line 1														
Level 1					[
Ln1, Lev1	2	Both	110.1	110.1	1596	-	1.0	-	261	1.00		261	3780	0.42
Line 2		1			[
Ln2, Lev1	2	Both	105.3	117.9	1527	-	.89	-	233	1.00		233	3378	0.45
E-W	W	For	ASD	Shear Force	[plf]	Asp	-Cub		Alle	owable \$	Shea	r [plf]		Resp.
Shearlines	Gp	Dir	v	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Со	С	Cmb	V [lbs]	Ratio
Line A														
Level 1														
LnA, Lev1	-	Both	_	-	2023	-	-	-	489	-		-	2446	-
Wall A-2	1^	Both	404.6	-	2023	-	1.0	-	489	-		489	2446	0.83
Line B					(
LnB, Lev1	-	Both	_	-	2038	-	-	-	261	-		-	2346	-
	<u> </u>		0000				1 0		0.61			0.01	0010	
Wall B-2	2^	Both	226.4	-	2038	_	1.0	-	261	-		261	2346	0.87

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir – Direction of seismic force along shearline.

v – Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS)

vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.3.4

FTAO walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers. V – ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment

Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.5.3. For segment or FTAO pier: Aspect ratio factor from SDPWS 4.3.5.5.1. For perforated wall: Either Cub or sum bi / FHS, where bi is segment length adjusted per SDPWS 4.3.3.4.

Int, Ext - Nominal unit shear capacity of interior and exterior sheathing, factored by Table 4.3-1 Note 3 for framing specific gravity and Note 10 for presence of hold-downs. For wall segments, also include unblocked factor Cub and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-6.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using Eqns. 4.3-3,-4.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V – Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "W" indicates that the wind design criterion was critical in selecting wall.

Notes:

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,1.

Level 1					Tensile Hold	d-down				
Line-		Locati	on [ft]	or Co	mpressive St	ud Force [lb:	sl		Сар	Crit
Wall	Posit'n	Х	Ŷ	Shear	Dead	Ev	- Cmb'd	Hold-down	[lbs]	Resp.
Line 1										
	V Elem	0.25	0.12	0	575	62	637	Compression		
1-2	L End	0.50	6.13	-1008	11545	1243	13796	Compression	15469	0.89
1-2	R End	0.50	24.38	-1008	5448	587	7043	Compression	15469	0.46
1-1	R End	0.25	24.63	0	5459	588	6046	Compression		-
Line 2										
2-1	L End	34.75	0.38	-1504	6554	706	8763	Compression	10312	0.85
2-1	R End	34.75	24.63	-1504	6554	706	8763	Compression	10312	0.85
Line A								-		
	V Elem	8.21	0.25	0	152	16	168	Compression		
	V Elem	10.21	0.25	0	152	16	168	Compression		
A-1	R Op 2	16.46	0.25	0	214	23	237	Compression		-
A-1	L Op 3	19.38	0.25	0	214	23	237	Compression		-
A-2	L End	22.63	0.50	3833	567	102	3367	HDU5-SDS	5645	0.60
A-2	L End	22.63	0.50	-3833	945	102	4879	Compression	10312	0.47
A-2	R End	27.38	0.50	3833	567	102	3367	HDU5-SDS	5645	0.60
A-2	R End	27.38	0.50	-3833	945	102	4879	Compression	10312	0.47
	V Elem	32.62	0.25	0	152	16	168	Compression		
	V Elem	34.63	0.25	0	152	16	168	Compression		
Line B										
B-1	L End	0.38	24.75	0	-320	57	263			
в-2	L End	0.63	24.50	-2096	4451	479	7025	Compression	10312	0.68
B-1	L Op 2	9.13	24.75	0	15225	1639	16864	Compression		-
B-2	R End	9.38	24.50	-2096	4451	479	7025	Compression	10312	0.68
B-1	R Op 2	21.38	24.75	0	9594	1033	10626	Compression		-
B-1	L Op 2	25.38	24.75	0	-1602	287	1315			
B-1	R Op 2	30.63	24.75	0	2137	230	2367	Compression		-
B-1	R End	34.63	24.75	0	1137	122	1259	Compression		-

Hold-Down and Compression Design (flexible seismic design)

Legend:

Line-Wall:

At wall or opening – Shearline and wall number

At vertical element – Shearline

Posit'n – Position of stud pack that hold-down is attached to:

V Elem – Vertical element: column or strengthened studs required where not at wall end or opening

L or R End – At left or right wall end

L or R Op n – At left or right side of opening n

t @ Op n – Uplift force t at opening n from offset opening in perforated wall above, from SDPWS 4.3.6.4.2.1

Location – Co-ordinates in Plan View

Tensile Hold-down or Compressive Stud Force – Upwards force on hold-down at one end of the wall or downward force on bottom plate under studs at the other end, for each force direction. Includes forces transferred from upper levels.

Shear – Overturning component = $V \times h / beff$ from SDPWS Eqn. 4.3-7; V = force on segment, ASD-factored by 0.70; h = wall height, beff = wall segment length – (tension stud pack width + hold-down anchor bolt offset) – (1/2 compression stud pack width). For perforated walls = $V \times h / Co$ sum (bi) from SDPWS Eqn. 4.3-8.

Dead – Dead load resisting component, factored for ASD by 0.60 for tension and 1.0 for compression

Ev - Vertical seismic load effect from ASCE 7 12.4.2.2 = -0.2 Sds x ASD factor x unfactored D = 0.179 SDS x factored D. Refer to Seismic Information table for more details.

Cmb'd – Sum of ASD-factored overturning, dead and vertical seismic forces. May also include the uplift force t from perforated walls from SDPWS 4.3.6.4.2.1 when openings are staggered.

Hold-down – Device model number from hold-down database; "Compression" for bearing of end stud pack on bottom plate

Cap – Hold-downs: Allowable ASD tension load from database; Compression: Allowable ASD bearing force = Ct CM Cb Fcp A; A = cross sectional area of end studs. Refer to Framing materials table for details.

Crit. Resp. – Critical Response = Combined ASD force/Allowable ASD tension load

Notes:

HDU5-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5" : Uses 14 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

Combined force from ASCE 7 2.4.1 load combination 10 = - (0.6D - 0.7Ev + 0.7Eh); Eh (from 12.4.2.1) = - shear overturning force

Refer to the Shear Line Dimensions table for wall height h, effective segment length beff and perforated wall adjusted sum of bi, to the Story Table for joist depth, and to the Shear Results table for perforated factor Co.

Designer is responsible for design of connection from wall to floor or foundation for shear force shown in Shear Results table. Refer to SDPWS 4.3.6.4.3 for foundation anchor bolt requirements.

|--|

Level 1				Drag	Strut	Strap/Blocking
Line-	Position on Wall	Location	[ft]	Force	[lbs]	Force [lbs]
Wall	or Opening	Х	Ŷ	>	<	> <
Line 1						
	Shearline force			2075	2075	
1-2	Left Wall End	0.50	6.00	-487	487	
1-2	Left Opening 1	0.50	16.00	97	-97	
1-2	Right Opening 1	0.50	20.00	-242	242	
1-2	Right Wall End	0.50	24.50	21	-21	
Line 2						
	Shearline force		1	1985	1985	
2-1	Left Opening 1	34.75	4.25	289	-289	
2-1	Right Opening 1	34.75	9.25	-260	260	
2-1	Left Opening 2	34.75	17.17	312	-312	
2-1	Right Opening 2	34.75	22.17	-187	187	
Line A						
	Shearline force		ĺ	2023	2023	
A-2	Left Wall End	22.50	0.50	-1305	1305	
A-2	Right Wall End	27.50	0.50	425	-425	
Line B	-					
	Shearline force			2038	2038	
в-2	Left Wall End	0.50	24.50	-15	15	
в-2	Right Wall End	9.50	24.50	1491	-1491	

Legend:

Line-Wall - Shearline and wall number

Position ... - Side of opening or wall end that drag strut is attached to

Location - Co-ordinates in Plan View

Drag strut Force - Axial force in transfer element at openings, gaps, or changes in design shear along shearline. + : tension; - : compression. Based on ASD-factored shearline force shown. For SDC C-F, it is the greater of the design shearline force and the diaphragm force Fpx, added to shearline force from story above and to forces transferred from discontinuous shearlines factored by overstrength (omega) as per 12.10.1.1. Refer to Seismic Information table for diaphragm forces and omega factor.

For SDC D-F, if horizontal torsional irregularities 2, 3, or 4 are input, or vertical irregularity 4 detected or input, 25% increase from 12.3.3.4 applied. For perforated walls, this force is converted to vmax using 4.3.6.4.1.1.

Strap/Blocking Force – For FTAO walls, force transferred from above and below opening to shearwall pier.

-> Due to shearline force in the west-to-east or south-to-north direction

<- Due to shearline force in the east-to-west or north-to-south direction

DEFLECTION (flexible seismic design)

Wall,	W						Bend	ling	Shear		Nail slip		Hold	Total
segment	Gp	Dir	Srf	v	b	h	Α	Defl	Defl	Vn	en	Defl	Defl	Defl
•	•			plf	ft	ft	sq.in	in	in	lbs	in	in	in	in
Level 1				-										
Line 1														
1-2	2	S->N	1	157.3	14.50	9.00	24.8	.002	.018	79	.014	.093	0.01	0.12
		N->S	1	157.3	14.50	9.00	24.8	.002	.018	79	.014	.093	0.05	0.16
Line 2														
2-1	2	Both	Ext	168.4	12.96	9.00	16.5	.003	.020	84	.016	.106	0.05	0.18
Line A														
A-2	1	Both	1	444.6	5.00	9.00	16.5	.018	.052	111	.026	.178	0.41	0.65
Line B														
B-2	2	Both	1	248.8	9.00	9.00	16.5	.006	.029	124	.033	.220	0.03	0.29

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B.

W Gp – Wall design group, refer to Sheathing and Framing Materials tables.

Dir – Force direction.

Srf – Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions.

v – Unfactored (strength-level) shear force per unit distance on wall segment = ASD force / 0.70, as per ASCE 7 12.8.6,.
 Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table.
 Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b – Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h – Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged. Defl – Horizontal shear wall deflection due to given term:

Bending = $8vh^3$ / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table For i studs at one end and j at the other, A = 2 (i^2 j + j^2 i) / (i + j)^2 x area of one stud, based on Ex. C4.3.4-3

Shear = vh / Gvtv; Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table. Nail slip = 0.75 h x en; en from Table C4.2.3D, of form aVn^b for WSP, varies linearly to published value for other materials. Vn – Strength-level shear force per nail along panel edge.

Hold - Anchorage system (hold-down) = da x h / beff.

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl – Deflection from bending + shear + nail slip + hold-down, as per Eqn. 4.3-2.

For FTAO walls, the average of the values for the segments, as per APA T555.

HOLD-DOWN DISPLACEMENT (flexible seismic design)

	Hold-	Tensio n	Vert.	Displace	ement	Slip	page	Shrink	Comp.	Crush	Total	Horz
Dir	down	force Ibs	Manuf in	Add in	da in	Vf Ibs	da in	+Extra in	force Ibs	da in	da in	Defl in
		1										
S->N	HDU2-SDS	-7174	.000	.000	0.000	-	-	.000	9906	0.02	0.02	0.01
N->S	HDU2-SDS	-2625	.000	.000	0.000	-	-	.000	19378	0.08	0.08	0.05
		1										
Both	HDU2-SDS	-2742	.000	.000	0.000	-	-	.000	12331	0.07	0.07	0.05
		1										
Both	HDU5-SDS	3507	.094	.000	0.094	-	-	.105	5680	0.02	0.21	0.41
		1										
Both	HDU2-SDS	-1018	.000	.000	0.000	-	-	.000	9218	0.03	0.03	0.03
	S->N N->S Both Both	Dir down S->N HDU2-SDS N->S HDU2-SDS Both HDU2-SDS Both HDU2-SDS	Hold- n force lbsDirdownS->N N->SHDU2-SDSBothHDU2-SDSBothHDU2-SDS2625BothHDU2-SDS2742BothHDU5-SDS3507	Hold- Dir Hold- down n force lbs Manuf in S->N N->S HDU2-SDS HDU2-SDS -7174 -2625 .000 .000 Both HDU2-SDS -2742 .000 Both HDU5-SDS 3507 .094	Hold- n Vert. Displace Dir down force Manuf Add Ibs in in in in S->N HDU2-SDS -7174 .000 .000 N->S HDU2-SDS -2625 .000 .000 Both HDU2-SDS -2742 .000 .000 Both HDU5-SDS 3507 .094 .000	Hold- Dir Hold- down n force Ibs Manuf in Add a da S->N N->S HDU2-SDS HDU2-SDS -7174 -2625 .000 .000 .000 .000 0.000 0.000 Both HDU2-SDS -2742 .000 .000 0.000 Both HDU5-SDS 3507 .094 .000 0.094	Hold- n Vert. Displacement Slip Dir down force Manuf Add da Vf Ibs in in in in lbs in lbs vert. Displacement Slip S->N HDU2-SDS -7174 .000 .000 0.000 - N->S HDU2-SDS -7174 .000 .000 0.000 - Both HDU2-SDS -2742 .000 .000 0.000 - Both HDU5-SDS 3507 .094 .000 0.094 -	Hold- n forceNanuf inAdd inda vert.SlippageDirdownforce lbsManuf inAdd inda inVf da lbsda inS->N N->SHDU2-SDS -7174 -2625.000.000 .0000.000 0.000Both HDU2-SDS -2742 .000.000 .000.000 0.000Both HDU5-SDS3507 .094.000 .0000.094	Hold- n Vert. Displacement Slippage Shrink Dir down force Manuf Add da Vf da +Extra Ibs in in	DirHold- n force lbsManuf inAdd inda inSlippageShrink da inComp. force inDirdownforce lbsManuf inAdd indaVf inda in+Extra inforce lbsS->N N->SHDU2-SDS -7174 -2625.000.000 .0000.000 0.000000 .0009906 19378Both HDU2-SDS -2742 .000.000 .0000.000000 .00012331Both HDU5-SDS3507.094.0000.0941055680	Hold- DirHold- downNVert. DisplacementSlippageShrinkComp.CrushDirdownforce lbsManuf inAdd inda inVfda in+Extra inforce inda inS->N N->SHDU2-SDS -7174 -2625.000.000 .0000.000 0.000 $-$ $ -$ $ 000$.0009906 9906 0.02 19378Both HDU2-SDS -2742 .000 .000 0.000 $-$ $ -$ $0.000123310.070.02BothHDU5-SDS3507094.0000.094- 10556800.020.02$	Hold- DirHold- downNVert. DisplacementSlippageShrinkComp.CrushTotalDirdownforce lbsManuf inAdd inda inVfda in+Extra inforce inda inda inS->N N->SHDU2-SDS-7174 -2625.000.000 .0000.000 0.000000 .0009906 .0000.02 0.020.02 0.02Both HDU2-SDS-2742.000.000 .0000.004000 .000123310.07 0.070.07Both HDU5-SDS3507.094.0000.09410556800.02 .0020.21

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B Dir – Force direction

Tens., Comp. force – Accumulated strength-level hold-down tension force T and end compression force C from overturning, dead loads and vertical earthquake loads

da – Vertical displacements due to the following components:

Vert. Displacement - Elongation when slippage calculated separately; displacement when combined elongation/slippage used

Manuf – Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD uplift force / ASD hold-down capacity) x max strength-level elongation or displacement

* - Maximum strength-level elongation or displacement is used. May result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es)

Ab = bolt cross-sectional area

Es = steel modulus = 29000000 psi

L = Lb - Lh

Lb = Total bolt length shown in Storey Information table

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage – Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = Vf / (270,000 D^1.5) (NDS 11.3.6); D = bolt diameter, Vf = Tension force T / number of fasteners

Shrink + Extra – Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (24% fabrication – 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table Crush – Deformation of bottom plate at compression end of wall segment

 $= 0.02" \times [r/0.73, r < 0.73; (1 + (r - 0.73)/0.27), 0.73 < r < 1; 2r^3, r > 1]$

r = fcp / Fcp'; Fcp' = Ct CM Fcp; fcp = C / Á, A = cross sectional area of end studs

Total da – Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl – Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) h and b are shown in Deflection table, beff in the Shear Wall Dimensions table

STORY DRIFT (flexible seismic design)

		Wall			Actual S	Story Drift (in)			Allowable S	Story Drift	atio C of M		
Level	Dir	height	Max	Line	Max	Center	C of M	C of M	hsx	Delta a	Ra	tio		
		ft	dxe		dx	of Mass	dxe	dx	ft	in	Max	C of M		
1		9.00							9.00	2.70				
	N<->S		0.18	2	0.71	16.97	0.17	0.68			0.26	0.25		
	E<->W		0.65	A	2.05	12.29	0.47	1.60			0.76	0.59		

ASCE 7 Eqn. 12.8-15: dx = dxe x Cd / le

Deflection amplification factor Cd from Table 12.2-1 = (E-W), 4.0 (N-S)

Importance factor le = 1.00

Legend:

Max dxe - Largest deflection for any shearline on level in this direction; refer to Deflections table

Line – Shearline with largest deflection on level in this direction

hsx – Story height in ASCE Table 12.12-1 = Height of walls plus joist depth between this level and the one above.

Max dx – Largest amplified deflection on level in this direction using ASCE 7 Eq'n 12.8-15

C of M dxe - Deflection at the center of mass of this level; from interpolating deflections at adjacent shearlines.

C of M dx - Amplified deflection at center of mass using Eq'n 12.8-15. Does not include differences between top and bottom diaphragm deflection. Delta a = Allowable story drift on this level from ASCE 7 Table 12.12-1

Ratio - Proportion of allowable story drift experienced, on this level in this direction.

Design Code: IBC 2021/AWC SDPWS 2021

_____ SEISMIC LOAD GENERATION ASCE 7-16 12.8 Equivalent Lateral Force Procedure Site Information: Risk Category II - All others SFRS = Bearing wall structure Regular Site class D S1 = 0.35, (Fv = 1.95) SS = 0.84, Fa = 1.37 Seismic Design Category D Ta: Calculated - refer to Equations and to Base Shear table, below R: Refer to Base Shear table below Site-specific ground motion analysis from Chapter 21 was used to determine Fa Legend: V - Total design base shear Cvx - Vertical distribution factor, level x Vx - Design story shear, level x R - Response modification factor Ie - Seismic importance factor Fx - Lateral force induced in level x Fpx - Diaphragm design force, level x Fpx - Diaphragm design force, level xCu - Coefficient for upper limit on period TW - Total seismic dead load on structureCs - Seismic design coefficientwx - Dead load tributary to story xSDS - Design short period spectral acceleration hx - Ceiling height of level x (floor of x+1) SD1 - Design 1s spectral response acceleration hn - Height of structure to mid-roof SS - Mapped short period spectral acceleration
Fi,wi,hi,Vi - Fx, etc. summed over levels S1 - Mapped 1s spectral response acceleration FI, WI, HI, VI - FX, etc. Summed over levelsSI - Mapped IS Spectral response acceleratVjx - Design force on shearline j, level xFa - Acceleration-based site coefficientVpjx - Diaphragm design shearline forceFv - Velocity-based site coefficientVdjx - Vert. discontinuous shearline forceT - Fundamental period of vibrationVcjx - Collector shearline forceT - Approximate period of vibrationFe, Fpe, we - Force, load from mass element eTa - Approximate period of vibration Fej,Fpej - Portion of Fe,Fpe applied to line j Omega - Overstrength factor SDC - Seismic Design Category SFRS - Seismic force resisting system Equations: Fx = Cvx V Eqn 12.8-11 (SDC B-F) = 0.01 wx Fx Eqn 1.4-1 (SDC A) = wx SUM(Fi)/SUM(wi), i = x to n Eqn 12.10-1 Fpx = Cs W Eqn 12.8-1 V = SUM(Fi),i = x to n Eqn 12.8-13 Vx Cvx = $hx^k wx/SUM(wi hi^k)$ i = 1 to n k = k(T)Eqn 12.8-12 Note, 12.8-12 Cscalc = Sds Ie/REqn 12.8-2 Csmax = Sd1 Ie/(R T) Csmin = max (0.044 Ie Sds, 0.01) Eqn 12.8-3 Eqn 12.8-5 Eqn 12.8-6 Csmin = 0.5 S1 Ie/R (Sds >= 0.6g) Ta = Ct hn^(3/4), hn in m Ie = Ie(risk category) Eqn 12.8-7 Table 1.5-2 Tmax = Ta Cu 12.8.2 = Cu(SD1) = 2/3 Fa SS Table 12.8-1 Cu Eqns 11.4-1,4-3 SDS SD1 = 2/3 Fv S1Eqns 11.4-2,4-4 Fa = Fa(SS, Site Class) Fv = Fv(S1, Site Class) SDC = SDC(SDS, SD1, occupancy) Table 11.4-1 Table 11.4-2 Tables 11.6-1,6-2 Omega = Omega(SFRS) Table 12.2-1 Fe = Fx we / wx Fpe = Fpx we / wx Assumption Assumption Vjx (flexible diaphragm) = SUM(Fej) + Vj,x+1 12.8.4 Vjx (rigid diaphragm) = See Torsional Analysis Details, F = Vx, CL = centroid of Fe's and Vj, x+1'sVpjx = Vjx using Fpe, and Omega * Vdj,x+1 12.10.1.1 = Vjx = max(Vjx,Vpjx) Vcjx 12.10.2 (SDC A, B) 12.10.2.1 - Exception (SDC C-F) Vcjx User Input and Source: Table 20.3-1 Site Classes A-F Risk Category Table 1.5-1 Fa and Fv for site profile F, maybe E Site specific study Table 12.2-1 R (also calculated) T (also calculated using Ta) deformational analysis Irregularities 12.3.2,3; Tables 12.3-1,2 SFRS Table 12.2-1 Total Design Base Shear:

Ie	SDC	W (lbs)	SDS	SD1	Cu	Tmax	Ta	k
1.00	D	37713	0.769	0.462	1.400	0.186	0.133	1.000
N-S E-W	R 6.5 6.5	T 0.133 0.133	SS 0.84 0.84	SDS 0.769 0.769		Csmax Csm 0.534 0 0.534 0	.034 0.118	4462

The first SDS value shown, used for Seismic Design Category, diaphragm design force limits, and out-of-plane forces, is not limited by ASCE 7 12.8.1.3. SDS values shown in lower table are for Cs and Ev calculations and may implement 12.8.1.3.

Manually added or modified seismic loads and forces do not contribute to base shear.

Distribution of Base Shear to Levels:

Level	hx	WX	hx * wx	Cvx	Fx (lbs)	Vx (l	bs)
	(ft)	(lbs)	(ft-lbs)		N-S	E-W	N-S	E-W
1	9.00	37713	339417	1.00	4462	4462	4462	4462

Manually added or modified seismic loads and forces are not included in the distribution of base shear.

Unfactored seismic loads for Level 1 -

Dir. No.	Start	End	Profile	Magnitude (1 From	
N<->S 1	-0.81	0.25	Line	85.0	85.0
N<->S 2	0.25	0.50	Line	100.9	100.9
N<->S 3	0.25	0.25	Point	348	348
N<->S 4	0.50	9.50	Line	104.1	104.1
N<->S 5	0.50	0.50	Point	59	59
N<->S 6	9.50	22.50	Line	100.9	100.9
N<->S 7	22.50	27.50	Line	104.1	104.1
N<->S 8	27.50	34.75	Line	100.9	100.9
N<->S 9	34.75	35.81	Line	85.0	85.0
N<->S 10	34.75	34.75	Point	348	348
W<->E 1	-1.37	0.25	Line	112.7	112.7
W<->E 2	0.25	6.00	Line	128.6	139.8
W<->E 3	0.25	0.25	Point	276	276
W<->E 4	0.50	0.50	Point	16	16
W<->E 5	6.00	13.00	Line	143.0	156.7
W<->E 6	13.00	24.50	Line	156.7	132.4
W<->E 7	24.50	24.50	Point	29	29
W<->E 8	24.50	24.75	Line	129.2	128.6
W<->E 9	24.75	26.25	Line	112.7	112.7
W<->E 10	24.75	24.75	Point	276	276

23M-007 750 Palisade.wsw

_____ WIND LOAD GENERATION MWFRS Procedure: ASCE 7-16 Directional (All heights) C&C Procedure: ASCE 7 Ch. 30 Part 1 (h <= 60 ft.) _____ _____ _____ Site Information: Enclosure = Partially open Internal gust factor Cgi = 2.0 Occupancy = Category II - All others Exposure = Exposure C Rigid building - Static analysis Case 2 Loads at 75% Eccentricity N-S loads = 15%, E-W loads = 15% Ground Elevation: = 0 feet Legend: p - Design wind pressure (see Equations) h - Mean roof height q - Velocity pressure z - Height of interest G - Gust factor theta - Roof angle Cp - External pressure factor B - Building width GCp - Combined exposure and gust factor L - Building length GCpi - Internal pressure coefficient V - Basic wind speed Ke - Ground elevation factor Kz - Velocity pressure exposure coefficient Kzt - Topographic factor Kd - Wind directionality factor zg - Ground elevation c, zmin, epsilon-bar, 1 - Terrain exposure constants used to calculate G hE, zg, alpha - Terrain exposure constants used to calculate K Equations: MWFRS Pressure Equation: p = q * G * CpC&C Pressure Equation: p = q * (GCp - GCpi)Other Equations: $q = 0.00256 * Kz * Kd * Kzt * Ke * V^2$ $\vec{K}e = e^{(-0.0000362 zg)}$ + 5.8 * (c * (max(0.6 * h, zmin) / 33) ^ (-1/6)))) Data (all loads): Kd = 0.85, GCpi = 0.18, Ke = 1.000 Terrain Exposure Constants: zmin = 15 c = 0.20 epsilon-bar = 0.201 = 500alpha = 9.5 = 900 zq hE = 15

Units: ft, lbs, ft/s

MAIN WIND FORCE RESISTING SYSTEM (MWFRS)

MWFRS - Block 1: EW x NS = 34.50 x 24.50 Mean Roof Height = 12.50

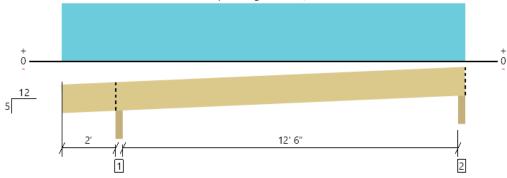
Level Face	Direction	p	q	GCp	Cp	Gz	z-G	Kz	z-K	Kzt	z-Kzt	theta	L/B	h/L
1 North	Windward	11.34	16.7	0.68	0.80	0.85	6.8	0.85	6.8	1.00	_	30.8	0.71	0.51
1 North	Leeward	-7.09	16.7	-0.43	-0.50	0.85	12.5	0.85	12.5	1.00	-	30.8	0.71	0.51
Roof North	Leeward	-8.50	16.7	-0.51	-0.60	0.85	12.5	0.85	12.5	1.00	-	30.8	0.71	0.51
Roof North	Windward	3.05	16.7	0.18	0.22	0.85	12.5	0.85	12.5	1.00	-	30.8	0.71	0.51
1 East	Windward	11.34	16.7	0.68	0.80	0.85	6.8	0.85	6.8	1.00	-	90.0	1.41	0.36
1 East	Leeward	-5.93	16.7	-0.36	-0.42	0.85	12.5	0.85	12.5	1.00	-	90.0	1.41	0.36
1 East	Leeward	-5.93	16.7	-0.36	-0.42	0.85	12.5	0.85	12.5	1.00	-	90.0	1.41	0.36
1 East	Windward	11.34	16.7	0.68	0.80	0.85	11.1	0.85	11.1	1.00	-	90.0	1.41	0.36
1 East	Leeward	-5.93	16.7	-0.36	-0.42	0.85	12.5	0.85	12.5	1.00	-	90.0	1.41	0.36
1 East	Windward	11.34	16.7	0.68	0.80	0.85	11.1	0.85	11.1	1.00	-	90.0	1.41	0.36
1 South	Windward	11.34	16.7	0.68	0.80	0.85	6.8	0.85	6.8	1.00	-	28.8	0.71	0.51
1 South	Leeward	-7.09	16.7	-0.43	-0.50	0.85	12.5	0.85	12.5	1.00	-	28.8	0.71	0.51
Roof South	Leeward	-8.50	16.7	-0.51	-0.60	0.85	12.5	0.85	12.5	1.00	-	28.8	0.71	0.51
Roof South	Windward	2.82	16.7	0.17	0.20	0.85	12.5	0.85	12.5	1.00	-	28.8	0.71	0.51
1 West	Windward	11.34	16.7	0.68	0.80	0.85	6.8	0.85	6.8	1.00	-	90.0	1.41	0.36
1 West	Leeward	-5.93	16.7	-0.36	-0.42	0.85	12.5	0.85	12.5	1.00	-	90.0	1.41	0.36
1 West	Leeward	-5.93	16.7	-0.36	-0.42	0.85	12.5	0.85	12.5	1.00	-	90.0	1.41	0.36
1 West	Windward	11.34	16.7	0.68	0.80	0.85	11.1	0.85	11.1	1.00	-	90.0	1.41	0.36
1 West	Leeward	-5.93	16.7	-0.36	-0.42	0.85	12.5	0.85	12.5	1.00	-	90.0	1.41	0.36
1 West	Windward	11.34	16.7	0.68	0.80	0.85	11.1	0.85	11.1	1.00	-	90.0	1.41	0.36
												loh #2'	311 007	740 Doligo

V - Total shear line force(lbs) Vw - Total force on perforated shear wall(lbs) V / L - Diaphragm shear force(plf) v - Unit shear wall force(plf) vmax - Perforated shear wall force = Vw / Co / sum(bi) (plf) sum(bi) - Sum of wall segment lengths adjusted for narrow segments(ft) FHS - Sum of full - height segment lengths on wall(ft) L - Length of shear line, including gaps and openings(ft) Co - perforated wall shear capacity adjustment factor Seg w / vmax - Wall segment for which v is set to vmax. Other v - Force on the other wall segments = (Vw - vmax * bs) / (FHS - bs)Drag strut force at - Sum of (V / L - v) * di along shear line (lbs), where di is the length of segments, openings or gaps.Locations shown are from start of shear line. Critical force - Largest drag strut force at each location derived from setting v = vmax on each segment independently(lbs) Shear wall 1-2, Level 1 W->E and S->N seismic design, flexible diaphragm vmax = 143.1, V/L = 84.7, Co = 1.000, FHS = 14.5, sum (bi) = 14.5 Seg w/ Seg Other Drag strut force at vmax Length v 1 10.0 143.1 6.00 16.00 20.00 24.50 97 -242 97 -242 21 -487 2 4.5 143.1 -487 21 Critical force: -487 97 -242 21 Shear wall 1-2, Level 1 W->E and S->N wind design, flexible diaphragm vmax = 127.8, V/L = 75.6, Co = 1.000, FHS = 14.5, sum (bi) = 14.5 Seg w/ Seg Other Drag strut force at vmax Length v 6.00 1 10.0 127.8 -435 6.00 16.00 20.00 24.50 87 -216 87 -216 19 19 2 4.5 127.8 -435 Critical force: -435 87 -216 19 Shear wall 1-2, Level 1 $\texttt{E}{\operatorname{\mathsf{->W}}}$ and $\texttt{N}{\operatorname{\mathsf{->S}}}$ wind design, flexible diaphragm vmax = 129.2, V/L = 76.4, Co = 1.000, FHS = 14.5, sum (bi) = 14.5 Seg w/ Seg Other Drag strut force at vmax Length v 6.00 16.00 20.00 24.50 10.0 129.2 440 -88 218 -19 1 2 440 -88 218 -19 4.5 129.2 Critical force: 440 -88 218 -19 Shear wall 1-2, Level 1 E->W and N->S seismic design, flexible diaphragm vmax = 143.1, V/L = 84.7, Co = 1.000, FHS = 14.5, sum (bi) = 14.5 Seg w/ Seg Other Drag strut force at vmax Length v 1 10.0 143.1 6.00 16.00 20.00 24.50 -97 1 487 242 -21 2 4.5 143.1 487 -97 242 -21 -97 Critical force: 487 242 -21 Shear wall 2-1, Level 1 W->E and S->N seismic design, flexible diaphragm vmax = 153.2, V/L = 81.0, Co = 1.000, FHS = 14.5, sum (bi) = 12.96 Seg w/ Seg Other Drag strut force at 4.25 9.25 17.17 22.17 vmax Length v 289 277 4.0 130.7 -116 -128 1 2 7.92 117.3 145 -260 312 -94 3 2.58 133.4 209 -196 219 -186 Critical force: -260 289 312 -186 Shear wall 2-1, Level 1 W->E and S->N wind design, flexible diaphragm vmax = 141.0, V/L = 74.6, Co = 1.000, FHS = 14.5, sum (bi) = 12.96 Seg w/ Seg Other Drag strut force at vmax Length v 4.25 9.25 17.17 22.17 4.0 120.3 266 -107 -118 1 255 7.92 107.9 133 -239 2 287 -86 3 2.58 122.7 193 -180 201 -172 -239 -172 Critical force: 266 287

Shear wall 2-1, Level 1 E->W and N->S wind design, flexible diaphragm vmax = 142.5, V/L = 75.4, Co = 1.000, FHS = 14.5, sum (bi) = 12.96 Seg w/ Seg Other Drag strut force at vmax Length v 4.25 9.25 17.17 22.17 1 4.0 121.6 -269 108 -257 119 2 7.92 109.1 -135 242 -290 87 3 2.58 124.1 -195 182 -203 174 Critical force: -269 242 -290 174 Shear wall 2-1, Level 1

 $\texttt{E}{\operatorname{\mathsf{->W}}}$ and $\texttt{N}{\operatorname{\mathsf{->S}}}$ seismic design, flexible diaphragm

 Image: Second construction of the second consecond consecond construction of the second constructi


 7.92
 117.3

 2.58
 133.4

 -311 -219 2 -145 260 94 187 3 -209 196 260 -311 Critical force: -289 187

Level, Roof: Rafter B1 1 piece(s) 2 x 8 DF No.2 @ 24" OC

Sloped Length: 16' 4 1/16"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) 668 @ 2' 1 3/4" 1.0 D + 1.0 Lr (All Spans) Member Reaction (lbs) 3555 (3.50") Passed (19%) Shear (lbs) 449 @ 2' 10 3/16" 1631 Passed (28%) 1.25 1.0 D + 1.0 Lr (All Spans) Moment (Ft-lbs) 1491 @ 8' 7 3/4" 1700 Passed (88%) 1.25 1.0 D + 1.0 Lr (Alt Spans) Live Load Defl. (in) 0.351 @ 8' 6 1/2" 0.460 Passed (L/471) ---1.0 D + 1.0 Lr (Alt Spans) Total Load Defl. (in) 0.664 @ 8' 6 11/16" 0.689 Passed (L/249) ---1.0 D + 1.0 Lr (Alt Spans)

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Upward deflection on left cantilever exceeds overhang deflection criteria.

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

· Applicable calculations are based on NDS.

Bear		earing Leng	Length Loads		to Supports	(lbs)	
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Beveled Plate - DF	3.50"	3.50"	1.50"	320	348	668	Blocking
2 - Beveled Plate - DF	3.50"	3.50"	1.50"	235	259	495	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	4' 10" o/c						
Bottom Edge (Lu) 16' 4" o/c							
•Maximum allowable bracing interv	Maximum allowable bracing intervals based on applied load.						

n allowable bracing intervals based on applied load

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Roof Live (non-snow: 1.25)	Comments
1 - Uniform (PSF)	0 to 15' 1"	24"	17.0	20.0	Default Load

Weyerhaeuser Notes

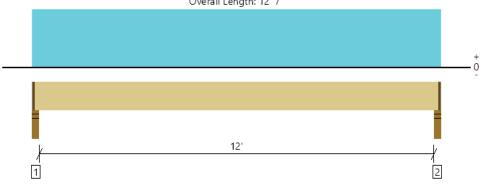
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Jeffrey Ford	
Jackson and Sands	
(530) 715-7184	
jeffrey@jacksonandsandsengineering.com	

Member Length : 16' 7 1/8"

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD Member Pitch : 5/12



Level, Roof: Joist B2

1 piece(s) 2 x 8 DF No.2 @ 24" OC

Overall Length: 12' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	272 @ 2 1/2"	1434 (2.25")	Passed (19%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	237 @ 10 3/4"	1631	Passed (15%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	814 @ 6' 3 1/2"	1700	Passed (48%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.129 @ 6' 3 1/2"	0.304	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.285 @ 6' 3 1/2"	0.608	Passed (L/513)		1.0 D + 1.0 Lr (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

PASSED

38

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

0

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	151	126	277	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.50"	151	126	277	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	12' 5" o/c						
Bottom Edge (Lu) 12' 5" o/c							
Maximum allowable bracing intervale based on annlied load							

mum allowable bracing intervals based on applied load

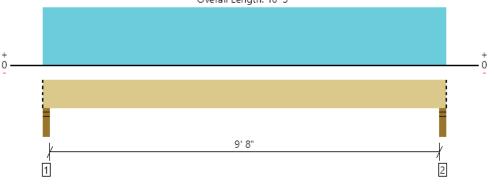
Vertical Load	Location (Side)	Spacing	Dead (0.90)	Roof Live (non-snow: 1.25)	Comments
1 - Uniform (PSF)	0 to 12' 7"	24"	12.0	10.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weverhaeuser facilities are third-party certified to sustainable forestry standards. Weverhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Note
Jeffrey Ford	
Jackson and Sands	1
(530) 715-7184	1
jeffrey@jacksonandsandsengineering.com	



Level, Int. Drop Beam B3 1 piece(s) 4 x 12 DF No.1

Overall Length: 10' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2027 @ 2"	5206 (3.50")	Passed (39%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	1541 @ 1' 2 3/4"	5906	Passed (26%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	4861 @ 5' 1 1/2"	8459	Passed (57%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.059 @ 5' 1 1/2"	0.331	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.122 @ 5' 1 1/2"	0.496	Passed (L/976)		1.0 D + 1.0 Lr (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

PASSED

39

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	1040	987	2027	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	1040	987	2027	Blocking
 Blocking Panels are assumed to carry no load 	s applied dire	tly above the	m and the ful	load is appli	ed to the mer	nber being d	esianed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 3" o/c	
Bottom Edge (Lu)	10' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

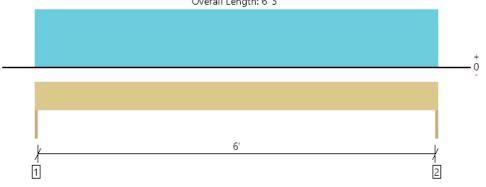
			Dead	Roof Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 10' 3"	N/A	10.0		
1 - Uniform (PLF)	0 to 10' 3" (Front)	N/A	117.5	129.5	Linked from: Roof: Rafter B1, Support 2
2 - Uniform (PLF)	0 to 10' 3" (Top)	N/A	75.5	63.0	Linked from: Roof: Joist B2, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Notes


ForteWEB Software Operator	Job
Jeffrey Ford	
Jackson and Sands	
(530) 715-7184	
jeffrey@jacksonandsandsengineering.com	

Level, Typ. Header B4 1 piece(s) 6 x 8 DF No.2

Overall Length: 6' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1509 @ 0	5156 (1.50")	Passed (29%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	1147 @ 9"	5844	Passed (20%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	2358 @ 3' 1 1/2"	4028	Passed (59%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.032 @ 3' 1 1/2"	0.156	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.066 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

PASSED

40

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Trimmer - SPF	1.50"	1.50"	1.50"	769	741	1509	None
2 - Trimmer - SPF	1.50"	1.50"	1.50"	769	741	1509	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	6' 3" o/c	

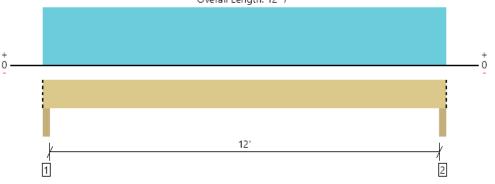
•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Roof Live (non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	10.4		
1 - Uniform (PLF)	0 to 6' 3"	N/A	160.0	174.0	Linked from: Roof: Rafter B1, Support 1
2 - Uniform (PLF)	0 to 6' 3"	N/A	75.5	63.0	Linked from: Roof: Joist B2, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Jeffrey Ford	
Jackson and Sands	
(530) 715-7184	
jeffrey@jacksonandsandsengineering.com	

Level, Porch: Beam B5 1 piece(s) 6 x 10 DF No.2

Overall Length: 12' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2185 @ 2"	12031 (3.50")	Passed (18%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	1809 @ 1' 1"	7402	Passed (24%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	6513 @ 6' 3 1/2"	7540	Passed (86%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.173 @ 6' 3 1/2"	0.306	Passed (L/852)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.344 @ 6' 3 1/2"	0.613	Passed (L/427)		1.0 D + 1.0 Lr (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

PASSED

41

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

• Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Column - SPF	3.50"	3.50"	1.50"	1090	1095	2185	Blocking
2 - Column - SPF	3.50"	3.50"	1.50"	1090	1095	2185	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 7" o/c	
Bottom Edge (Lu)	12' 7" o/c	
Maximum allowable bracing interv	als based on applied load	

Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 12' 7"	N/A	13.2		
1 - Uniform (PLF)	0 to 12' 7" (Front)	N/A	160.0		Linked from: Roof: Rafter B1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weverhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Note
Jeffrey Ford	
Jackson and Sands	
(530) 715-7184	
jeffrey@jacksonandsandsengineering.com	

LIC# : KW-06012341, Build:20.23.2.14

Jackson & Sands Engineering

Project File: 23M-007 Orland ADU's.ec6

(c) ENERCALC INC 1983-2022

DESCRIPTION: F1, Cont. Ftg.

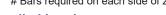
Code References

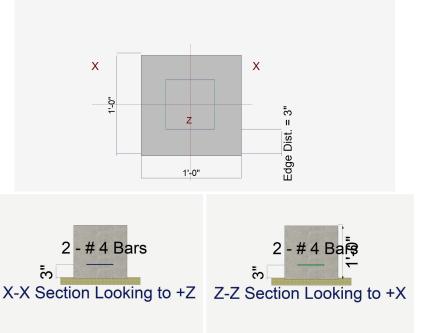
Calculations per ACI 318-19, IBC 2021, ASCE 7-16 Load Combinations Used : ASCE 7-16

General Information

Material Prope	erties				-
f'c : Concret	e 28 day strength	=	2	.50 ksi	
fy : Rebar Y	ield	=	6	0.0 ksi	
Ec : Concre	te Elastic Modulus	=	3,12	2.0 ksi	
Concrete De	ensity	=	14	5.0 pcf	
$_{\odot}$ Values	Flexure	=	0	.90	
I	Shear	=	0.7	750	1
Analysis Setti	ngs				
Min Steel %	Bending Reinf.		=		
Min Allow %	Temp Reinf.		=	0.00180	
Min. Overtu	rning Safety Factor		=	1.0 : 1	
Min. Sliding	Safety Factor		=	1.0:1	I
Add Ftg Wt	for Soil Pressure		:	Yes	
Use ftg wt fo	or stability, moments 8	shears	:	Yes	
Add Pedest	al Wt for Soil Pressure	•	:	No	
Use Pedesta	al wt for stability, mom	& shear	:	No	
	•				

	Soil Design Values		4.50 4.6
	Allowable Soil Bearing	=	1.50 ksf
	Soil Density	=	110.0 pcf
	Increase Bearing By Footing Weight	=	No
	Soil Passive Resistance (for Sliding)	=	250.0 pcf
	Soil/Concrete Friction Coeff.	=	0.30
	Increases based on footing Depth		
	Footing base depth below soil surface	=	ft
	Allow press. increase per foot of depth	=	ksf
	when footing base is below	=	ft
: 1	-		
: 1	Increases based on footing plan dimens	ion	
	Allowable pressure increase per foot of d	epth	
		=	ksf
	when max. length or width is greater than	า	
		=	ft


Dimensions


Width parallel to X-X Axis	=	1.0 ft
Length parallel to Z-Z Axis	=	1.0 ft
Footing Thickness	=	12.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis	=	in
Height	-	in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	#	2.0 4
Bars parallel to Z-Z Axis			
Number of Bars	=		2.0
Reinforcing Bar Size	=	#	4
Bandwidth Distribution Check	(ACI 15.4.4.2	2)	
Direction Requiring Closer Sepa	aration		
			n/a
# Bars required within zone			n/a
# Bars required on each side of	zone		n/a

Ζ

Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	=	0.310	0.360		0.0			k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

LIC# : KW-06012341, Build:20.23.2.14

DESCRIPTION: F1, Cont. Ftg.

Jackson & Sands Engineering

Project File: 23M-007 Orland ADU's.ec6

(c) ENERCALC INC 1983-2022

	Min. Ratio	Item	Applied	Capacity	Governing Load Combinatior
PASS	0.5433	Soil Bearing	0.8150 ksf	1.50 ksf	+D+Lr about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.007718	Z Flexure (+X)	0.1185 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	0.007718	Z Flexure (-X)	0.1185 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	0.007718	X Flexure (+Z)	0.1185 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	0.007718	X Flexure (-Z)	0.1185 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	n/a	1-way Shear (+X)	0.0 psi	75.0 psi	n/a
PASS	0.0	1-way Shear (-X)	0.0 psi	0.0 psi	n/a
PASS	n/a	1-way Shear (+Z)	0.0 psi	75.0 psi	n/a
PASS	n/a	1-way Shear (-Z)	0.0 psi	75.0 psi	n/a
PASS	n/a	2-way Punching	1.236 psi	75.0 psi	+1.20D+1.60Lr

Detailed Results

Soil Bearing Rotation Axis & Xecc Zecc Actual Soil Bearing Stress @ Location Actual / /											
Rotation Axis &		Xecc	Zecc		•			Actual / Allow			
Load Combination	Gross Allowable	(in	I)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio			
X-X, D Only	1.50	n/a	0.0	0.4550	0.4550	n/a	n/a	0.303			
X-X, +D+Lr	1.50	n/a	0.0	0.8150	0.8150	n/a	n/a	0.543			
X-X, +D+0.750Lr	1.50	n/a	0.0	0.7250	0.7250	n/a	n/a	0.483			
X-X, +0.60D	1.50	n/a	0.0	0.2730	0.2730	n/a	n/a	0.182			
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.4550	0.4550	0.303			
Z-Z, +D+Lr	1.50	0.0	n/a	n/a	n/a	0.8150	0.8150	0.543			
Z-Z, +D+0.750Lr	1.50	0.0	n/a	n/a	n/a	0.7250	0.7250	0.483			
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.2730	0.2730	0.182			

Overturning Stability

Rotation Axis & Load Combination		Over	turning Mome	ent	Resisting Mo	ment S	tability Ratio	Status
Footing Has NO Overturning								
Sliding Stability								All units k
Force Application Axis Load Combination		S	liding Force		Resisting Fo	orce S	tability Ratio	Status
Footing Has NO Sliding								
Footing Flexure								
Flexure Axis & Load Combination	Mu	Side	Tension	As Req'd	Gvrn. As	Actual As	Phi*Mı	າ Statu

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.05425	+Z	Bottom	0.2592	AsMin	0.40	15.353	ОК
X-X, +1.40D	0.05425	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+0.50Lr	0.0690	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+0.50Lr	0.0690	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D	0.04650	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D	0.04650	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+1.60Lr	0.1185	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+1.60Lr	0.1185	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +0.90D	0.03488	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +0.90D	0.03488	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.40D	0.05425	-X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.40D	0.05425	+X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D+0.50Lr	0.0690	-X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D+0.50Lr	0.0690	+X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D	0.04650	-X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D	0.04650	+X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D+1.60Lr	0.1185	-X	Bottom	0.2592	AsMin	0.40	15.353	OK

LIC# : KW-06012341, Build:20.23.2.14

DESCRIPTION: F1, Cont. Ftg.

Jackson & Sands Engineering

Project File: 23M-007 Orland ADU's.ec6

(c) ENERCALC INC 1983-2022

Footing Flexure

Flexure Axis & Load Combination	n Mu k-ft	Side	Tension Surface		Gvrn. A in^2	As Actual in^2	As	Phi*M k-ft	n	Status
Z-Z, +1.20D+1.60Lr	0.1185	+X	Bottom	0.2592	AsMin	0.4	0	15.3	353	ок
Z-Z, +0.90D	0.03488	-X	Bottom	0.2592	AsMin	0.4	0	15.3	353	OK
Z-Z, +0.90D	0.03488	+X	Bottom	0.2592	AsMin	0.4	0	15.3	353	OK
One Way Shear										
Load Combination	Vu @ -X	Vu @	+X Vι	ı@-Z Vu	@ +Z	Vu:Max	Phi Vn	Vu /	/ Phi*Vn	Status
+1.40D	0.00 p	si	0.00 psi	0.00 psi	0.00 ps	i 0.00 psi	75.0	0 psi	0.00	OK
+1.20D+0.50Lr	0.00 p	si	0.00 psi	0.00 psi	0.00 ps	i 0.00 psi	75.0	0 psi	0.00	OK
+1.20D	0.00 p	si	0.00 psi	0.00 psi	0.00 ps	i 0.00 psi	75.0	0 psi	0.00	OK
+1.20D+1.60Lr	0.00 p	si	0.00 psi	0.00 psi	0.00 ps	i 0.00 psi	75.0	0 psi	0.00	OK
+0.90D	0.00 p	si	0.00 psi	0.00 psi	0.00 ps	i 0.00 psi	75.0	0 psi	0.00	OK
Two-Way "Punching" Shear									All units	k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn	1			Status
+1.40D		0.5	7 psi	150.00	psi	0.003772				OK
+1.20D+0.50Lr		0.7	2 psi	150.00	psi	0.004798				OK
+1.20D		0.4	9 psi	150.00	psi	0.003233				OK
+1.20D+1.60Lr		1.2	4 psi	150.00	psi	0.008239				OK
+0.90D		0.3	6 psi	150.00	psi	0.002425				OK

Project File: 23M-007 Orland ADU's.ec6 General Footing LIC# : KW-06012341, Build:20.23.2.14 Jackson & Sands Engineering (c) ENERCALC INC 1983-2022 DESCRIPTION: F2, Int. Beam Ftg. Code References Calculations per ACI 318-19, IBC 2021, ASCE 7-16 Load Combinations Used : ASCE 7-16 **General Information** Material Properties Soil Design Values f'c : Concrete 28 day strength = 2.50 ksi Allowable Soil Bearing 1.50 ksf = fy : Rebar Yield = 60.0 ksi = Soil Density 110.0 pcf Ec : Concrete Elastic Modulus = 3,122.0 ksi Increase Bearing By Footing Weight = No Concrete Density = 145.0 pcf Soil Passive Resistance (for Sliding) = 250.0 pcf ⊕ Values = Flexure 0.90 = Soil/Concrete Friction Coeff. 0.30 = 0.750 Shear Increases based on footing Depth **Analysis Settings** Footing base depth below soil surface = ft = Min Steel % Bending Reinf. Allow press. increase per foot of depth = ksf Min Allow % Temp Reinf. = 0.00180 when footing base is below = ft Min. Overturning Safety Factor = 1.0:1 Min. Sliding Safety Factor = 1.0:1 Increases based on footing plan dimension Add Ftg Wt for Soil Pressure . Yes Allowable pressure increase per foot of depth = ksf Use ftg wt for stability, moments & shears · Yes when max. length or width is greater than Add Pedestal Wt for Soil Pressure No = ft Use Pedestal wt for stability, mom & shear No **Dimensions** Width parallel to X-X Axis = 1.750 ft Ζ 1.750 ft Length parallel to Z-Z Axis = 12.0 in Footing Thickness _ Х Pedestal dimensions... Х px : parallel to X-X Axis = in 1-9" = pz : parallel to Z-Z Axis in Height in ູ ຄ Rebar Centerline to Edge of Concrete... at Bottom of footing 3.0 in = Dist. Edge Reinforcing 1'-9' Bars parallel to X-X Axis _ Number of Bars 3.0 ± Reinforcing Bar Size = 4 Bars parallel to Z-Z Axis Number of Bars 3.0 = 3 - # 4 Bars 3 - # 4 Bars Reinforcing Bar Size # = 4 Bandwidth Distribution Check (ACI 15.4.4.2) ē. . . **Direction Requiring Closer Separation** Z-Z Section Looking to +X X-X Section Looking to +Z n/a # Bars required within zone n/a # Bars required on each side of zone n/a

Applied Loads

		D	Lr	L	S	W	E	н
P : Column Load OB : Overburden	=	1.50	1.40	1.60	0.0			k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

LIC# : KW-06012341, Build:20.23.2.14

DESCRIPTION: F2, Int. Beam Ftg.

IGN SU	UMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9127	Soil Bearing	1.369 ksf	1.50 ksf	+D+0.750Lr+0.750L about Z-Z ax
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.05315	Z Flexure (+X)	0.7050 k-ft/ft	13.263 k-ft/ft	+1.20D+1.60Lr+L
PASS	0.05315	Z Flexure (-X)	0.7050 k-ft/ft	13.263 k-ft/ft	+1.20D+1.60Lr+L
PASS	0.05315	X Flexure (+Z)	0.7050 k-ft/ft	13.263 k-ft/ft	+1.20D+1.60Lr+L
PASS	0.05315	X Flexure (-Z)	0.7050 k-ft/ft	13.263 k-ft/ft	+1.20D+1.60Lr+L
PASS	0.02785	1-way Shear (+X)	2.089 psi	75.0 psi	+1.20D+1.60Lr+L
PASS	0.02785	1-way Shear (-X)	2.089 psi	75.0 psi	+1.20D+1.60Lr+L
PASS	0.02785	1-way Shear (+Z)	2.089 psi	75.0 psi	+1.20D+1.60Lr+L
PASS	0.02785	1-way Shear (-Z)	2.089 psi	75.0 psi	+1.20D+1.60Lr+L
PASS	0.09558	2-way Punching	14.337 psi	150.0 psi	+1.20D+1.60Lr+L

Jackson & Sands Engineering

Detailed Results

Rotation Axis &		Xec		Actu	al Soil Bearing	Stress @ Loc	ation	Actual / Allow
Load Combination G	Fross Allowab	le	(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n	/a 0.0	0.6348	0.6348	n/a	n/a	0.423
X-X, +D+L	1.50	n	/a 0.0	1.157	1.157	n/a	n/a	0.771
X-X, +D+Lr	1.50	n	/a 0.0	1.092	1.092	n/a	n/a	0.728
X-X, +D+0.750Lr+0.750L	1.50	n	/a 0.0	1.369	1.369	n/a	n/a	0.913
X-X, +D+0.750L	1.50	n	/a 0.0	1.027	1.027	n/a	n/a	0.685
X-X, +0.60D	1.50	n	/a 0.0	0.3809	0.3809	n/a	n/a	0.254
Z-Z, D Only	1.50	0	.0 n/a	n/a	n/a	0.6348	0.6348	0.423
Z-Z, +D+L	1.50	0	.0 n/a	n/a	n/a	1.157	1.157	0.771
Z-Z, +D+Lr	1.50	0	.0 n/a	n/a	n/a	1.092	1.092	0.728
Z-Z, +D+0.750Lr+0.750L	1.50	0	.0 n/a	n/a	n/a	1.369	1.369	0.913
Z-Z. +D+0.750L	1.50	0	.0 n/a	n/a	n/a	1.027	1.027	0.685
Z-Z, +0.60D	1.50	0	.0 n/a	n/a	n/a	0.3809	0.3809	0.254
verturning Stability								
Rotation Axis &		•						
Load Combination		Overturi	ning Mome	nt	Resisting Mor	nent Stat	oility Ratio	Status
Footing Has NO Overturning								
liding Stability							A	ll units k
Force Application Axis								
Force Application Axis Load Combination		Slidi	ng Force		Resisting Fo	rce Stat	oility Ratio	Status
		Slidi	ng Force		Resisting Fo	rce Stat	oility Ratio	Status
Load Combination		Slidi	ng Force		Resisting Fo	rce Stat	oility Ratio	Status
Load Combination Footing Has NO Sliding		Side	Tension	As Req'd	Gvrn. As	Actual As	Phi*Mn	Status Status
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D	k-ft 0.2625	Side +Z	Tension	in^2 0.2592	Gvrn. As	Actual As in^2 0.3429	Phi*Mn k-ft 13.263	Status
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination	k-ft	Side +Z	Tension Surface	in^2 0.2592 0.2592	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft 13.263 13.263	Status
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D	k-ft 0.2625	Side +Z -Z	Tension Surface Bottom	in^2 0.2592	Gvrn. As in^2 AsMin	Actual As in^2 0.3429	Phi*Mn k-ft 13.263	Status
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D	k-ft 0.2625 0.2625	Side +Z -Z +Z	Tension Surface Bottom Bottom	in^2 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin	Actual As in^2 0.3429 0.3429	Phi*Mn k-ft 13.263 13.263	Status OK OK
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L	k-ft 0.2625 0.2625 0.6325	Side +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom	in^2 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin	Actual As in^2 0.3429 0.3429 0.3429	Phi*Mn k-ft 13.263 13.263 13.263	Status OK OK OK
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L	k-ft 0.2625 0.2625 0.6325 0.6325	Side +Z -Z +Z -Z +Z	Tension Surface Bottom Bottom Bottom Bottom	in^2 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin	Actual As in^2 0.3429 0.3429 0.3429 0.3429 0.3429	Phi*Mn k-ft 13.263 13.263 13.263 13.263 13.263	Status OK OK OK OK
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L	k-ft 0.2625 0.2625 0.6325 0.6325 0.5450	Side +Z -Z +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom Bottom Bottom	in ² 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429	Phi*Mn k-ft 13.263 13.263 13.263 13.263 13.263 13.263 13.263	Status OK OK OK OK OK
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60Lr+L	k-ft 0.2625 0.2625 0.6325 0.6325 0.5450 0.5450	Side +Z -Z +Z -Z +Z -Z +Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom	in ² 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429	Phi*Mn k-ft 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263	Status OK OK OK OK OK OK
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60Lr+L X-X, +1.20D+1.60Lr+L	k-ft 0.2625 0.6325 0.6325 0.5450 0.5450 0.7050 0.7050	Side +Z -Z +Z -Z +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in ² 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429	Phi*Mn k-ft 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263	Status OK OK OK OK OK OK OK
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60Lr+L X-X, +1.20D+1.60Lr+L X-X, +1.20D+1.60Lr	k-ft 0.2625 0.6325 0.6325 0.5450 0.5450 0.7050 0.7050 0.7050	Side +Z -Z +Z -Z +Z -Z +Z -Z +Z -Z +Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in ² 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429	Phi*Mn k-ft 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263	Status OK OK OK OK OK OK OK
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60Lr+L X-X, +1.20D+1.60Lr X-X, +1.20D+1.60Lr X-X, +1.20D+1.60Lr	k-ft 0.2625 0.6325 0.6325 0.5450 0.5450 0.7050 0.7050 0.5050	Side +Z -Z +Z -Z +Z -Z +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in ² 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429	Phi*Mn k-ft 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263	Status OK OK OK OK OK OK OK OK
Load Combination Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60Lr+L X-X, +1.20D+1.60Lr+L X-X, +1.20D+1.60Lr	k-ft 0.2625 0.6325 0.6325 0.5450 0.5450 0.7050 0.7050 0.7050	Side +Z -Z +Z -Z +Z -Z +Z -Z +Z -Z +Z -Z +Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in ² 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429	Phi*Mn k-ft 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263 13.263	Status OK OK OK OK OK OK OK

Project File: 23M-007 Orland ADU's.ec6

(c) ENERCALC INC 1983-2022

(c) ENERCALC INC 1983-2022

Project File: 23M-007 Orland ADU's.ec6

General Footing

LIC# : KW-06012341, Build:20.23.2.14

DESCRIPTION: F2, Int. Beam Ftg.

Footing Flexure

Flexure Axis & Load Combinatio	n Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual A in^2	As Phi*M k-ft		Status
X-X, +1.20D	0.2250	-Z	Bottom	0.2592	AsMin	0.3429) 13.:	263	ок
X-X, +1.20D+0.50Lr+L	0.5125	+Z	Bottom	0.2592	AsMin	0.3429) 13.:	263	OK
X-X, +1.20D+0.50Lr+L	0.5125	-Z	Bottom	0.2592	AsMin	0.3429) 13.	263	OK
X-X, +0.90D	0.1688	+Z	Bottom	0.2592	AsMin	0.3429) 13.:	263	OK
X-X, +0.90D	0.1688	-Z	Bottom	0.2592	AsMin	0.3429		263	OK
Z-Z, +1.40D	0.2625	-X	Bottom	0.2592	AsMin	0.3429) 13.:	263	OK
Z-Z, +1.40D	0.2625	+X	Bottom	0.2592	AsMin	0.3429) 13.:	263	OK
Z-Z, +1.20D+0.50Lr+1.60L	0.6325	-X	Bottom	0.2592	AsMin	0.3429) 13.:	263	OK
Z-Z, +1.20D+0.50Lr+1.60L	0.6325	+X	Bottom	0.2592	AsMin	0.3429) 13.	263	OK
Z-Z, +1.20D+1.60L	0.5450	-X	Bottom	0.2592	AsMin	0.3429) 13.	263	OK
Z-Z, +1.20D+1.60L	0.5450	+X	Bottom	0.2592	AsMin	0.3429) 13.	263	OK
Z-Z, +1.20D+1.60Lr+L	0.7050	-X	Bottom	0.2592	AsMin	0.3429) 13.	263	OK
Z-Z, +1.20D+1.60Lr+L	0.7050	+X	Bottom	0.2592	AsMin	0.3429			OK
Z-Z, +1.20D+1.60Lr	0.5050	-X	Bottom	0.2592	AsMin	0.3429) 13.:	263	OK
Z-Z, +1.20D+1.60Lr	0.5050	+X	Bottom	0.2592	AsMin	0.3429			OK
Z-Z, +1.20D+L	0.4250	-X	Bottom	0.2592	AsMin	0.3429) 13.:	263	OK
Z-Z, +1.20D+L	0.4250	+X	Bottom	0.2592	AsMin	0.3429			OK
Z-Z, +1.20D	0.2250	-X	Bottom	0.2592	AsMin	0.3429			OK
Z-Z, +1.20D	0.2250	+X	Bottom	0.2592	AsMin	0.3429) 13.:	263	OK
Z-Z, +1.20D+0.50Lr+L	0.5125	-X	Bottom	0.2592	AsMin	0.3429		263	OK
Z-Z, +1.20D+0.50Lr+L	0.5125	+X	Bottom	0.2592	AsMin	0.3429) 13.	263	OK
Z-Z, +0.90D	0.1688	-X	Bottom	0.2592	AsMin	0.3429) 13.	263	OK
Z-Z, +0.90D	0.1688	+X	Bottom	0.2592	AsMin	0.3429) 13.:	263	OK
One Way Shear									
Load Combination	Vu @ -X	Vu @		-	-			/ Phi*Vn	Status
+1.40D	0.78 ps		0.78 psi	0.78 psi	0.78 psi	0.78 psi	75.00 psi	0.01	OK
+1.20D+0.50Lr+1.60L	1.87 ps	si	1.87 psi	1.87 psi	1.87 psi	1.87 psi	75.00 psi	0.02	OK
+1.20D+1.60L	1.62 ps	si	1.62 psi	1.62 psi	1.62 psi	1.62 psi	75.00 psi	0.02	OK
+1.20D+1.60Lr+L	2.09 ps	si	2.09 psi	2.09 psi	2.09 psi	2.09 psi	75.00 psi	0.03	OK
+1.20D+1.60Lr	1.50 ps		1.50 psi	1.50 psi	1.50 psi	1.50 psi	75.00 psi	0.02	OK
+1.20D+L	1.26 ps		1.26 psi	1.26 psi	1.26 psi	1.26 psi	75.00 psi	0.02	OK
+1.20D	0.67 ps		0.67 psi	0.67 psi	0.67 psi	0.67 psi	75.00 psi	0.01	OK
+1.20D+0.50Lr+L	1.52 ps		1.52 psi	1.52 psi	1.52 psi	1.52 psi	75.00 psi	0.02	OK
+0.90D	0.50 pt		0.50 psi	0.50 psi	0.50 psi	0.50 psi	75.00 psi	0.01	OK
Two-Way "Punching" Shear	0.50 P	51	0.00 p3i	0.00 pai	0.00 p3i	0.00 p3i	70.00 p3	All units	
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		5.3	4 psi	150.00 p	isi	0.03559			OK
+1.20D+0.50Lr+1.60L			6 psi	150.00 p		0.08575			OK
+1.20D+1.60L			8 psi	150.00 p		0.07389			OK
+1.20D+1.60Lr+L			4 psi	150.00 p		0.09558			OK
+1.20D+1.60Lr			7 psi	150.00 p		0.06846			OK
+1.20D+L			4 psi	150.00 p		0.05762			OK
+1.20D			8 psi	150.00 p		0.0305			OK
+1.20D+0.50Lr+L			2 psi	150.00 p		0.06948			OK
+0.90D			3 psi	150.00 p		0.02288			OK
0.000		0.4	• P01	100.000		0.02200			•

Jackson & Sands Engineering

Project Title: Engineer: Project ID: Project Descr:

General Footing							Project F		Orland ADU's.ec6
LIC# : KW-06012341, Build:20.23.				Jackson & Sa	nds Engineering			(c) ENE	RCALC INC 1983-202
DESCRIPTION: F3, F	ront Porch	Pier							
code References									
Calculations per ACI 318-	19 IBC 2021	ASCE	7-16						
Load Combinations Used			. / 10						
Seneral Information									
					0) / - l			
Material Properties f'c : Concrete 28 day stre	nath	=	2.5	50 ksi	Soil Design Allowable	Soil Bearing		=	1.50 ksf
fy : Rebar Yield		=).0 ksi	Soil Densi	0		=	110.0 pcf
Ec : Concrete Elastic Mo	dulus	=	,	.0 ksi	Increase E	Searing By Foot	ting Weight	=	No
Concrete Density		=		5.0 pcf		ve Resistance		=	250.0 pcf
ϕ Values Flexure		=	0.9			rete Friction Co		=	0.30
Shear Analysis Settings		=	0.7	50		ased on footin			
Min Steel % Bending Rei	nf.		=			ase depth belov ss. increase per		=	ft ksf
Min Allow % Temp Reinf.			=	0.00180		ooting base is t		=	ft
Min. Overturning Safety F			=	1.0 : 1		g			
Min. Sliding Safety Facto			=	1.0:1		ased on footin			
Add Ftg Wt for Soil Press			:	Yes	Allowable	pressure increa	ase per foot o	•	15
Use ftg wt for stability, me		ars	:	Yes	when max	. length or widt	h is greater th	nan =	ksf
Add Pedestal Wt for Soil			:	No		a lengar er mat		=	ft
Use Pedestal wt for stabi	lity, mom & sł	near	:	No					
imensions									
Width parallel to X-X Axis	=		1.0 ft			-			
Length parallel to Z-Z Axis Footing Thickness	=		1.0 ft 12.0 in			Z			
Pedestal dimensions					X		Х		
px : parallel to X-X Axis	=		in						
pz : parallel to Z-Z Axis Height	=		in in		10"				
Rebar Centerline to Edge of	Concrete				÷-	z		" "	
at Bottom of footing	=		3.0 in			4		;; ;;	
								Dis	
Reinforcing								Edge Dist.	
•						1'-0"		ы	
Bars parallel to X-X Axis Number of Bars	=		2.0						
Reinforcing Bar Size	=	#	4						
Bars parallel to Z-Z Axis									
Number of Bars	=		2.0		2 - # 4 Ba	are		2 # 1	Bafs
Reinforcing Bar Size	=	#	4		$2 - \pi + Da$	13		2-#4	
Bandwidth Distribution Ch		4.4.2)		ື່				and the second	
Direction Requiring Closer	Separation				tion Look	ing to +Z			oking to +X
"D			n/a				2-2 36		
# Bars required within zone			n/a						
# Bars required on each sid	le of zone		n/a						
pplied Loads				1			147		
P · Column Lood		D 3720		Lr	L	S	W	E	H
P : Column Load OB : Overburden	=	0.3720		0.3910		0.0			k ksf
M-xx	=								k-ft
M-zz	=								k-n k-ft

Irden	=	0.3720	0.3910	0.0	ksf
	=				k-ft k-ft
	=				k-ft
	=				k
	=				k

V-x V-z

LIC# : KW-06012341, Build:20.23.2.14

DESCRIPTION: F3, Front Porch Pier

	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.6053	Soil Bearing	0.9080 ksf	1.50 ksf	+D+Lr about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.008728	Z Flexure (+X)	0.1340 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	0.008728	Z Flexure (-X)	0.1340 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	0.008728	X Flexure (+Z)	0.1340 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	0.008728	X Flexure (-Z)	0.1340 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	n/a	1-way Shear (+X)	0.0 psi	75.0 psi	n/a
PASS	0.0	1-way Shear (-X)	0.0 psi	0.0 psi	n/a
PASS	n/a	1-way Shear (+Z)	0.0 psi	75.0 psi	n/a
PASS	n/a	1-way Shear (-Z)	0.0 psi	75.0 psi	n/a
PASS	n/a	2-way Punching	1.398 psi	75.0 psi	+1.20D+1.60Lr

Jackson & Sands Engineering

Detailed Results

Rotation Axis &		Xecc	Zecc	Actual	Actual Soil Bearing Stress @ Location						
Load Combination	Gross Allowable	(in)		Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio			
X-X, D Only	1.50	n/a	0.0	0.5170	0.5170	n/a	n/a	0.345			
X-X, +D+Lr	1.50	n/a	0.0	0.9080	0.9080	n/a	n/a	0.605			
X-X, +D+0.750Lr	1.50	n/a	0.0	0.8103	0.8103	n/a	n/a	0.540			
X-X, +0.60D	1.50	n/a	0.0	0.3102	0.3102	n/a	n/a	0.207			
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.5170	0.5170	0.345			
Z-Z, +D+Lr	1.50	0.0	n/a	n/a	n/a	0.9080	0.9080	0.605			
Z-Z, +D+0.750Lr	1.50	0.0	n/a	n/a	n/a	0.8103	0.8103	0.540			
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.3102	0.3102	0.207			

Overturning Stability

Flowure Axis 9 Load Combination	Mu	Side	Tension	As Rea'd	Gvrn. As	Actual /	As Phi*M	n Statu
Footing Flexure								
Footing Has NO Sliding								
Force Application Axis Load Combination		S	liding Force		Resisting Fo	orce	Stability Ratio	Status
Sliding Stability								All units k
Footing Has NO Overturning								
Rotation Axis & Load Combination		Over	turning Mome	nt	Resisting Mo	ment	Stability Ratio	Status

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.06510	+Z	Bottom	0.2592	AsMin	0.40	15.353	ОК
X-X, +1.40D	0.06510	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+0.50Lr	0.08024	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+0.50Lr	0.08024	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D	0.05580	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D	0.05580	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+1.60Lr	0.1340	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+1.60Lr	0.1340	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +0.90D	0.04185	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +0.90D	0.04185	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.40D	0.06510	-X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.40D	0.06510	+X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D+0.50Lr	0.08024	-X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D+0.50Lr	0.08024	+X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D	0.05580	-X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D	0.05580	+X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D+1.60Lr	0.1340	-X	Bottom	0.2592	AsMin	0.40	15.353	OK

(c) ENERCALC INC 1983-2022

Project File: 23M-007 Orland ADU's.ec6

LIC# : KW-06012341, Build:20.23.2.14

Jackson & Sands Engineering

Project File: 23M-007 Orland ADU's.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: F3, Front Porch Pier

Footing Flexure

Flexure Axis & Load Combination	n Mu k-ft	Side	Tensio Surfac			vrn. As in^2	s Actual in^2		Phi*Mn k-ft	Status
Z-Z, +1.20D+1.60Lr	0.1340	+X	Bottom	0.2592	А	sMin	0.4	0	15.353	ок
Z-Z, +0.90D	0.04185	-X	Bottom	0.2592	A	sMin	0.4	0	15.353	OK
Z-Z, +0.90D	0.04185	+X	Bottom	0.2592	A	sMin	0.4	0	15.353	OK
One Way Shear										
Load Combination	Vu @ -X	Vu @	+X V	/u@-Z \	′u @ +Z		Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	0.00 p	si	0.00 psi	0.00 psi	0.	00 psi	0.00 psi	75.00	psi 0.00	OK
+1.20D+0.50Lr	0.00 p	si	0.00 psi	0.00 psi	0.	00 psi	0.00 psi	75.00	psi 0.00	OK
+1.20D	0.00 p	si	0.00 psi	0.00 psi	0.	00 psi	0.00 psi	75.00	psi 0.00	OK
+1.20D+1.60Lr	0.00 p	si	0.00 psi	0.00 psi	0.	00 psi	0.00 psi	75.00	psi 0.00	OK
+0.90D	0.00 p	si	0.00 psi	0.00 psi	0.	00 psi	0.00 psi	75.00	psi 0.00	OK
Two-Way "Punching" Shear									All units	s k
Load Combination		Vu		Phi*V	า		Vu / Phi*Vn	ı		Status
+1.40D		0.6	8 psi	150.0	0psi		0.004526			OK
+1.20D+0.50Lr		0.8	4 psi	150.0	0 psi		0.005579			OK
+1.20D		0.5	8 psi	150.0	0psi		0.00388			OK
+1.20D+1.60Lr		1.4	0 psi	150.0	0psi		0.009317			OK
+0.90D		0.4	4 psi	150.0	0psi		0.00291			OK