

STRUCTURAL ANALYSIS

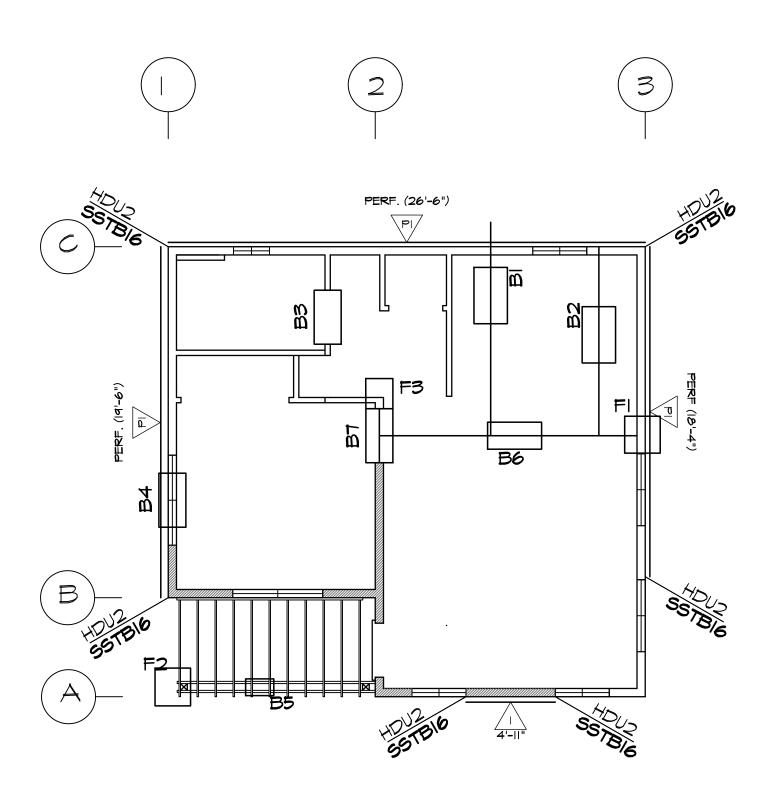
For: City of Orland ADU's Std. Orland, CA 599 SQFT Project # 23M-007

> **July 24, 2023** (PC1 SUBMITTAL)

JACKSON & SANDS ENGINEERING, Inc. 1250 East Ave. #10 Chico, CA 95926 <u>info@jacksonandsandsengineering.com</u>

TABLE OF CONTENTS:

SCOPE OF WORK:	1
PROJECT LAYOUT:	2
DESIGN LOADS / CRITERIA:	3-4
LATERAL DESIGN:	5-35
BEAM DESIGN:	36-42
FOOTING DESIGN:	43-51


SCOPE OF WORK

<u>Scope</u>

The following Structural Analysis is for a new light-wood framed single family residence to be built on a new slab-on-grade floor. Analysis of structure was performed with respect to the forces of seismic and wind and gravity using the applicable chapters of the A.S.C.E. 7-16. The structural design of this project used two methods for lateral restraint system: Perforated shear wall design (SDPWS 2021 sec. 4.3.5.3) and segmented shear wall design (SDPWS 2021 sec. 4.3.5.1). Analysis and design for gravity loads were performed to verify beam design per AWC NDS 2021 for wood members.

Analysis

The building was analyzed as 1 diaphragm and idealized as flexible for a simplified analysis. The footings and beams were designed with appropriate design loads using the Enercalc and Forte web software.

	Gravity Loads:	Per ASCE 7-16		SEISMIC	
Roof Dea	d Loads:	Comp Roofing	5 psf	ASCE 7-16	
		1/2" Roof ply	1.8 psf	EQUIVALENT LATERA	L
Slope=	<mark>6</mark> /12	Framing	1.5 psf	FORCE PROCEEDURE	
	27 Degrees	Insulation	1 psf	Design Category:	D (default)
		1/2" covering	2.8 psf	I =	II
		Solar	3 psf	Ss =	0.842
		Misc	1 psf	S1 =	0.355
		Total =	16.1 psf	SMS =	1.01
		Total Sloped=	19.00 psf	SM1 =	null
				SDS =	0.673
Roof Live	Loads	Construction=	20 psf	SD1 =	null
		Ground Snow=	0 psf	TL =	16
		Flat Roof Snow=	0 psf	R0 =	1.3
		Sloped Roof Snow=	0.0 psf	R =	6.5
				SNOW LOA	D
Exterior V	Vall Dead Load	Wood	2.00 psf	Sloped Roof	0.0 PSF
		3/8" ply	2.40 psf	Seismic =	0 PSF
		2x6 Framing	1.70 psf	WIND	
		1/2" sheetrock	2.20 psf	MAIN WIND FORCE R	ESISTING SYSTEM,
		Insulation	1.10 psf	ALL HEIGHTS METHO	D ASCE 7-16
		Misc	1.00 psf	CHAPTERS 26 & 27	
		Wall total=	11.00 psf	WIND SPEED =	95 MPH
				EXPOSURE =	С
Interior w	vall dead load	2x Framing	1.7 psf	ENCLOSURE =	ENCLOSED
		1/2" sheetrock	4.4 psf		
		Misc	1 psf		
		Wall total=	8 psf		

Design Loads / Criteria

OSH₽D

Orland, CA 95963, USA

Latitude, Longitude: 39.7473803, -122.1963748

	S Dollar Ge	neral Richfield Metal Swift St								
Fehama St	Walker St	West Mitsubishi								
		The Hive TAQUERIA Maple Garden St								
Goog	gle	Map data ©2023								
Date		4/4/2023, 3:10:58 PM								
Design C	ode Reference Document	ASCE7-16								
Risk Cate	egory	II								
Site Class	S	D - Default (See Section 11.4.3)								
Туре	Value	Description								
SS	0.842	MCE _R ground motion. (for 0.2 second period)								
S ₁	0.355	MCE _R ground motion. (for 1.0s period)								
S _{MS}	1.01	Site-modified spectral acceleration value								
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value								
S _{DS}	0.673	Numeric seismic design value at 0.2 second SA								
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA								
Туре	Value	Description								
SDC	null -See Section 11.4.8	Seismic design category								
Fa	1.2	Site amplification factor at 0.2 second								
Fv	null -See Section 11.4.8	Site amplification factor at 1.0 second								
PGA	0.373	MCE _G peak ground acceleration								
F _{PGA}	1.227	Site amplification factor at PGA								
PGA _M	0.457	Site modified peak ground acceleration								
ΤL	16	Long-period transition period in seconds								
SsRT	0.842	Probabilistic risk-targeted ground motion. (0.2 second)								
SsUH	0.928	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration								
SsD	1.5	Factored deterministic acceleration value. (0.2 second)								
S1RT	0.355	Probabilistic risk-targeted ground motion. (1.0 second)								
S1UH	0.397	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.								
S1D	0.6	Factored deterministic acceleration value. (1.0 second)								
PGAd	0.5	Factored deterministic acceleration value. (Peak Ground Acceleration)								
PGA _{UH}	0.373	Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration								
	0.907	Mapped value of the risk coefficient at short periods								

SOFTWARE FOR WOOD DESIGN

WoodWorks® Shearwalls 2023

23M-007 599 Walnut.wsw

Apr. 4, 2023 15:29:25

5

Project Information

	gn Code WC SDPWS 2021	-	Vind Standard rectional (All hei	ghts)	Seismic Standard ASCE 7-16
	Load Cor	mbinations		Building Cod	e Capacity Modification
For Design (ASD)		For Deflection (Stre	ength)	Wind	Seismic
0.70 Seismic +	0.60 Dead	1.00 Seismic +	0.90 Dead	1.00	1.00
0.60 Wind +	0.60 Dead	1.00 Wind +	0.90 Dead		
	Service Conditions	s and Load Duration		Max Sh	earwall Offset [ft]
Duration	Temperature	Moistu	ire Content	Plan	Elevation
Factor	Range	Fabrication	Service	(within story)	(between stories)
-	-	24% (>19%)	10% (<=19%)	0.50	_
		Maximum	Height-to-width Ratio		
Wood	panels	Fiberboard	Lumber		Gypsum
Blocked	Unblocked		Wind Se	eismic Bloc	ked Unblocked
3.5	2.0	-	-		
	Ignore shear resista	ance contribution of		Ford	es based on
Wall	segments	Se	ismic	Hold-downs	Applied loads
Side with inv	alid aspect ratio	Any gypsum, lu	mber, fiberboard	Drag struts	Applied loads
	Shea	arwall relative rigidity	. Wall capacity		
Non-identical	materials and construc	tion on the shearline	Not allowed		
		Deflection Equation	: 4-term from SDPW	S C4.3.4-1	
	Drift	limit for wind design	: 1 / 100 story he	ight	
		FTAO strap	: Continuous at to	p of highest open	ing and bottom of lowes

SITE INFORMATION

ASCE 7-16 Dire	Wind ctional (All he	eights)	Seismic ASCE 7-16 12.8 Equivalent Lateral Force Procedure						
Design Wind Speed	95 mph		Risk Category Category II - All others						
Serviceability Wind Speed	100 mph		Structure Type Regular						
Exposure	Exposure C		Building System	Bearing Wall					
Enclosure	Partially e	nclosed	Design Category	D					
Min Wind Loads: Walls	16 psf		Site Class	D					
Roofs	Roofs 8 psf Spectral Response Acceleration								
Topograp	hic Information [ft]		S1: 0.355g	• Ss: 0.8	42g				
Shape	Height	Length	Fundamental Period	E-W	N-S				
-	-	-	T Used	0.134s	0.134s				
Site Location: -			Approximate Ta	0.134s	0.134s				
E	lev: Oft		Maximum T	0.187s	0.187s				
Rigid buildi	ng - Static ana	lysis	Response Factor R	6.50	6.50				
Case 2	E-W loads	N-S loads	Fa: 1.16	Fv: 1.9	5				
Eccentricity (%)	15	15							
Loaded at	75%								

WoodWorks® Shearwalls

23M-007 599 Walnut.wsw Apr. 4, 2023 15:29:25

Structural Data

STORY INFORMATION

			Hold-dov	vn	
	Story Elev [ft]	Floor/Ceiling Depth [in]	Wall Height [ft]	Length subject to shrinkage [in]	Bolt length [in]
Ceiling	9.00	0.0			
Level 1	0.00	0.0	9.00	3.75	4.5
Foundation	0.00				

BLOCK and ROOF INFORMATION

	Block		Roof Panels						
	Dimensions [ft]	[Face	Туре	Slope	Overhang [ft]			
Block 1	1 Story	E-W Ridge							
Location X,Y =	0.00	-5.58	North	Side	30.0	1.00			
Extent X,Y =	26.50	25.08	South	Side	30.0	1.00			
Ridge Y Location, Offset	6.96	0.00	East	Gable	90.0	1.00			
Ridge Elevation, Height	16.24	7.24	West	Gable	90.0	1.00			

SHEATHING MATERIALS by WALL GROUP

			Sheathing								Fasteners					Apply
G	irp	Surf	Material	Ratng	Thick	GU	Ply	Or	Gvtv	Size	Туре	RS	Eg	Fd	Bk	Notes
					in	in			lbs/in				in	in		
	1	Ext	Struct Sh OSB	24/0	3/8	-	-	Horz	77500	8d	Box	N	6	12	Y	3

Legend:

Grp – Wall Design Group number, used to reference wall in other tables (created by program)

Surf - Exterior or interior surface when applied to exterior wall

Ratng – Span rating, see SDPWS Table C4.2.3C

Thick – Nominal panel thickness

GU - Gypsum underlay thickness

Ply – Number of plies (or layers) in construction of plywood sheets

Or - Orientation of longer dimension of sheathing panels or lumber planks. Dbl. = Double diagonal.

Gvtv – Shear stiffness in Ib/in. of depth from SDPWS Tables C4.2.3A-B

Type – Fastener type from SDPWS Tables 4.3A-D:

Common: common wire nail; Box: galvanized box nail; Casing: casing nail; Roof: galvanized roofing nail; Cooler: cooler nail; WBoard: wallboard nail; Screw: drywall screw; Gauge: nail measured by gauge; Galv: galvanized gauge nail; GWB: Gypsum wallboard blued nail Size... Erem Tables 4.34 D and Tables 4.1: chown in Well laput fastener drandown

Size - From Tables 4.3A-D and Table A1; shown in Wall Input fastener dropdown

Common nails: 6d = 0.113 x 2", 8d = 0.131 x 2.5", 10d = 0.148 x 3", 12d = 0.148 x 3.5" Box or casing nails: 6d = 0.099 x 2", 8d = 0.113 x 2.5", 10d = 0.128 x 3", 12d = 0.126 x 3.5"

Gauge, roofing and GWB nails: $13 \text{ ga} = 0.92^{\circ} \times 1-1/8^{\circ}$; $11 \text{ ga} = 0.120^{\circ} \times 1-1/8^{\circ}$ (GWB nail for gypsum lath & plaster), $1-1/4^{\circ}$ (gyp. L&P), $1-1/2^{\circ}$

(wire lath & plaster, 1/2" fiberboard ,1/2" GWB), 1-3/4" (GSB, 5/8" GWB, 25/32" fiberboard, 2-ply GWB base), 2-3/8" (2-ply GWB face)

Cooler or wallboard nail: 5d = .086" x 1-5/8"; 6d = .092" x 1-7/8"; 8d = .113" x 2-3/8"; 6/8d = 6d base ply, 8d face ply for 2-ply GWB. Drywall screws: No. 6, 1-1/4" long.

RS – Ring-shank nails (non-shearwalls only), with increased withdrawal capacity as per NDS 12.2.3.2.

Eg – Panel edge fastener spacing. For lumber sheathing, no. of nails per board at shear wall boundary. For 2-ply GWB, spacing of all nails in face ply.

Fd – Field spacing interior to panels. For lumber sheathing, no. of nails per board at interior studs. For 2-ply GWB, spacing of all nails in face ply.

Bk – Sheathing is nailed to blocking at all panel edges; Y(es) or N(o)

Apply Notes - Notes below table legend which apply to sheathing side

Notes:

3. Shear capacity for current design has been increased to the value for 15/32" sheathing with same nailing because stud spacing is 16" max. or panel orientation is horizontal. See SDPWS Table 4.3A Note 2.

FRAMING MATERIALS and STANDARD WALL by WALL GROUP

Wall Grp	Species	Grade	b in	d in	Spcg in	SG	E psi^6	Fcp	Standard Wall
1	D.Fir-L	No.2	1.50	5.50	16	0.50	1.60	625	

Legend:

Wall Grp – Wall Design Group

b – Stud breadth (thickness)

d – Stud depth (width)

Spcg – Maximum on-centre spacing of studs for design, actual spacing may be less.

SG – Specific gravity

E - Modulus of elasticity

Standard Wall - Standard wall designed as group.

Fcp - Compressive strength perpendicular to grain

Notes:

Check manufacture requirements for stud size, grade and specific gravity (G) for all shearwall hold-downs.

The following factors are applied to Fcp for compressive design and deformation under wall segment end studs :

Bearing area factor Cb from NDS 3.10.4, under window openings.

SHEARLINE, WALL and OPENING DIMENSIONS

North-south	Туре	Wall	Location	Exten		Length	FHS	Aspect	Height	Studs
Shearlines		Group	X [ft]	Start	End	[ft]	[ft]	Ratio	[ft]	S N
Line 1										
Level 1										
Line 1		1	0.00	-5.50	19.50	25.00	13.37	-	9.00	
Wall 1-1	Prf	1	0.00	-5.50	19.50	25.00	13.37	-	-	2 2
Segment 1		-	-	-5.50	-5.42	0.08	0.08	108.00	-	
Opening 1		-	-	-5.42	0.08	5.50	5.50	-	9.00	
Segment 2		-	-	0.08	2.92	2.83	1.78	3.18	-	
Opening 2		-	-	2.92	7.92	5.00	5.00	-	9.00	
Segment 3		-	-	7.92	19.50	11.58	11.58	0.78	-	
Line 2										
Level 1										
Line 2	NSW		11.75	-5.50	0.08	5.58	0.00	-	9.00	
Wall 2-1	NSW		11.75	-5.50	0.08	5.58	0.00	1.00	-	2 2
Line 3										
Level 1										
Line 3		1	26.50	-5.50	19.50	25.00	13.50	_	9.00	
Wall 3-1	Prf	1	26.50	-5.50	19.50	25.00	13.50	_	-	2 2
Segment 1		-	-	-5.50	-3.00	2.50	2.50	3.60	_	
Opening 1		-	-	-3.00	1.00	4.00	4.00	_	3.00	
Segment 2		-	-	1.00	4.00	3.00	2.00	3.00	_	
Opening 2		-	-	4.00	8.00	4.00	4.00	-	3.00	
Segment 3		-	-	8.00	19.50	11.50	11.50	0.78	-	
East-west	Туре	Wall	Location	Exten		Length	FHS	Aspect	Height	Studs
Shearlines		Group	Y [ft]	Start	End	[ft]	[ft]	Ratio	[ft]	WΕ
Line A										
Level 1										
Line A		1	-5.50	0.00	26.50	26.50	5.00	-	9.00	
Wall A-1	Seg	1	-5.50	0.00	26.50	26.50	5.00	-	-	2 2
Segment 1		-	-	0.00	0.50	0.50	0.25	18.00	-	2 2 2 2 2 2 2 2
Opening 1		-	-	0.50	11.50	11.00	-	-	9.00	2 2
Segment 2		-	-	11.50	13.67	2.17	1.92	4.15	-	2 2
Opening 2		-	-	13.67	16.67	3.00	-	-	9.00	2 2
Segment 3		-	-	16.67	21.67	5.00	4.75	1.80	-	2 2
Opening 3					0.4 68	0 0 0		-	9.00	2 2
opening J		-	-	21.67	24.67	3.00	-	_		~ ~
Segment 4		-	-	21.67 24.67	24.67 26.50	3.00 1.83	- 1.58	4.91	-	2 2
Segment 4 Line B										
Segment 4 Line B Level 1	NSW		-	24.67	26.50	1.83	1.58		-	2 2
Segment 4 Line B Level 1 Line B	NSW NSW		- 0.17	24.67 0.50	26.50 11.67	1.83	1.58	4.91		2 2
Segment 4 Line B Level 1 Line B Wall B-1	NSW NSW		-	24.67	26.50	1.83	1.58		- 9.00	2 2
Segment 4 Line B Line B Wall B-1 Line C			- 0.17	24.67 0.50	26.50 11.67	1.83	1.58	4.91	- 9.00	2 2
Segment 4 Line B Line B Wall B-1 Line C Level 1		-	0.17 0.17	24.67 0.50 0.50	26.50 11.67 11.67	1.83 11.17 11.17	1.58 0.00 0.00	4.91 _ 1.00	- 9.00 -	2 2 2 2
Segment 4 Line B Line B Wall B-1 Line C Level 1 Line C	NSW	- 1	- 0.17 0.17 19.50	24.67 0.50 0.50 0.00	26.50 11.67 11.67 26.50	1.83 11.17 11.17 26.50	1.58 0.00 0.00 19.90	4.91 _ 1.00 _	- 9.00 - 9.00	2 2
Segment 4 Line B Line B Wall B-1 Line C Level 1 Line C Wall C-1		- 1 1	- 0.17 0.17 19.50 19.50	24.67 0.50 0.50 0.00 0.00	26.50 11.67 11.67 26.50 26.50	1.83 11.17 11.17 26.50 26.50	1.58 0.00 0.00 19.90 19.90	4.91 - 1.00 -	- 9.00 - 9.00	2 2
Segment 4 Line B Level 1 Line B Wall B-1 Line C Level 1 Line C Wall C-1 Segment 1	NSW	- 1 1	- 0.17 0.17 19.50 19.50	24.67 0.50 0.50 0.00 0.00 0.00	26.50 11.67 11.67 26.50 26.50 3.75	1.83 11.17 11.17 26.50 26.50 3.75	1.58 0.00 0.00 19.90 19.90 3.13	4.91 - 1.00 - 2.40	- 9.00 - 9.00 -	2 2
Segment 4 Line B Level 1 Line B Wall B-1 Line C Wall C-1 Segment 1 Opening 1	NSW	- 1 - -	0.17 0.17 19.50 19.50 -	24.67 0.50 0.50 0.00 0.00 0.00 3.75	26.50 11.67 11.67 26.50 26.50 3.75 5.75	1.83 11.17 11.17 26.50 26.50 3.75 2.00	1.58 0.00 0.00 19.90 19.90 3.13 2.00	4.91 - 1.00 - 2.40	- 9.00 - 9.00 - 3.00	2 2
Segment 4 Line B Level 1 Line B Wall B-1 Line C Level 1 Line C Wall C-1 Segment 1 Opening 1 Segment 2	NSW	- 1 - -	- 0.17 0.17 19.50 19.50 - - -	24.67 0.50 0.50 0.00 0.00 0.00 3.75 5.75	26.50 11.67 11.67 26.50 26.50 3.75 5.75 20.42	1.83 11.17 11.17 26.50 26.50 3.75 2.00 14.67	1.58 0.00 0.00 19.90 19.90 3.13 2.00 14.67	4.91 - 1.00 - 2.40 - 0.61	- 9.00 - 9.00 - 3.00	
Segment 4 Line B Level 1 Line B Wall B-1 Line C Wall C-1 Segment 1 Opening 1	NSW	- 1 - -	0.17 0.17 19.50 19.50 -	24.67 0.50 0.50 0.00 0.00 0.00 3.75	26.50 11.67 11.67 26.50 26.50 3.75 5.75	1.83 11.17 11.17 26.50 26.50 3.75 2.00	1.58 0.00 0.00 19.90 19.90 3.13 2.00	4.91 - 1.00 - 2.40	- 9.00 - 9.00 - 3.00	2 2

Legend:

Type – Seg = Segmented, Prf = Perforated, FT = FTAO (force transfer around openings), NSW = non-shearwall

Location – Position in structure perpendicular to wall

Length – Shear line: Distance between exterior perpendicular walls defining the shear line extent Wall, segment, or opening: End-to-end length of the element

FHS – Depending on element, shows different definitions of full-height sheathing length (FHS):

Shear lines with multiple walls, segmented walls, or FTAO walls: Total shear-resisting FHS

Individual wall segments or walls without openings: Distance between hold-downs beff

Perforated walls: Sum of factored segment lengths bi defined in SDPWS 4.3.5.6

Aspect Ratio – Ratio of wall height to segment length (h/b); for FTAO walls, the aspect ratio of the central pier

Wall Group – Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall

Studs: Number of end studs at the south and north or west and east ends of a wall segment or a perforated or FTAO wall.

If two wall group numbers listed, they are for rigid diaphragm and flexible diaphragm design.

WoodWorks® Shearwalls

23M-007 599 Walnut.wsw Apr. 4, 2023 15:29:25

Loads

WIND SHEAR LOADS (as entered or generated)

Level 1									Magnitu	de	Trib
Block	F	Element	Load					n [ft]	[lbs,plf,p	osf]	Ht
			Case	Dir	Dir		Start	End	Start	- End	[ft]
Block 1	W	L Gable	1	W->E	Wind	Area	-5.58	6.96	0.0	11.3	7.24
Block 1 Block 1	W	L Gable	 Min	W->E W->E	Wind Wind	Area	-5.58	6.96	0.0	8.0	7.24
										8.0	
Block 1	W	Wall	Min	W->E	Wind	Area	-5.50	19.50	8.0		4.50
Block 1	W	Wall	1	W->E	Wind	Area	-5.50	19.50	11.3	0 0	4.50
Block 1	W	R Gable	1	W->E	Wind	Area	6.96	19.50	11.3	0.0	7.24
Block 1	W	R Gable	Min	W->E	Wind	Area	6.96	19.50	8.0	0.0	7.24
Block 1	E	L Gable	Min	W->E	Lee	Area	-5.58	6.96	0.0	8.0	7.24
Block 1	E	L Gable	1	M->E	Lee	Area	-5.58	6.96	0.0	6.9	7.24
Block 1	E	Wall	1	W->E	Lee	Area	-5.50	19.50	6.9		4.50
Block 1	Ε	Wall	Min	W->E	Lee	Area	-5.50	19.50	8.0		4.50
Block 1	E	R Gable	1	W->E	Lee	Area	6.96	19.50	6.9	0.0	7.24
Block 1	E	R Gable	Min	W -> E	Lee	Area	6.96	19.50	8.0	0.0	7.24
Block 1	W	L Gable	Min	E->W	Lee	Area	-5.58	6.96	0.0	8.0	7.24
Block 1	W	L Gable	1	E->W	Lee	Area	-5.58	6.96	0.0	6.9	7.24
Block 1	W	Wall	1	E->W	Lee	Area	-5.50	19.50	6.9		4.50
Block 1	W	Wall	Min	E->W	Lee	Area	-5.50	19.50	8.0		4.50
Block 1	W	R Gable	1	E->W	Lee	Area	6.96	19.50	6.9	0.0	7.24
Block 1	W	R Gable	Min	E->W	Lee	Area	6.96	19.50	8.0	0.0	7.24
Block 1	E	L Gable	1	E->W	Wind	Area	-5.58	6.96	0.0	11.3	7.24
Block 1	E	L Gable	Min	E->W	Wind	Area	-5.58	6.96	0.0	8.0	7.24
Block 1	E	Wall	Min	E->W	Wind	Area	-5.50	19.50	8.0		4.50
Block 1	E	Wall	1	E->W	Wind	Area	-5.50	19.50	11.3		4.50
Block 1	E	R Gable	1	E->W	Wind	Area	6.96	19.50	11.3	0.0	7.24
Block 1	Ē	R Gable	Min	E->W	Wind	Area	6.96	19.50	8.0	0.0	7.24
Block 1	S	Roof	Min	S->N	Wind	Area	-1.00	27.50	4.0		7.82
Block 1	S	Roof	1	S->N	Wind	Area	-1.00	27.50	2.8		7.82
Block 1	S	Wall	1	S->N	Wind	Area	0.00	26.50	11.3		4.50
Block 1	S	Wall	Min	S->N	Wind	Area	0.00	26.50	8.0		4.50
Block 1	N	Roof	1	S->N	Lee	Area	-1.00	27.50	8.5		7.82
Block 1	N	Roof	Min	S->N	Lee	Area	-1.00	27.50	4.0		7.82
Block 1	N	Wall	1	S->N	Lee	Area	0.00	26.50	7.1		4.50
Block 1	N	Wall	Min	S->N	Lee	Area	0.00	26.50	8.0		4.50
Block 1	S	Roof	1	N->S	Lee	Area	-1.00	27.50	8.5		7.82
Block 1	S	Roof	Min	N->S	Lee	Area	-1.00	27.50	4.0		7.82
Block 1	S	Wall	1	N->S	Lee	Area	0.00	26.50	4.0 7.1		4.50
Block 1	S	Wall	Min	N->S	Lee	Area	0.00	26.50	8.0		4.50
Block 1	N	Roof	1	N->S	Wind	Area	-1.00	20.50	2.8		7.82
			 Min	N->S N->S			-1.00	27.50			7.82
Block 1	N	Roof			Wind	Area			4.0		4.50
Block 1	N	Wall	1	N->S	Wind	Area	0.00	26.50	11.3		
Block 1	N	Wall	Min	N->S	Wind	Area	0.00	26.50	8.0		4.50

Legend:

Block - Block used in load generation

Accum. = loads from one block combined with another

Manual = user-entered loads (so no block)

F - Building face (north, south, east or west)

Element - Building surface on which loads generated or entered

Load Case - One of the following:

ASCE 7 All Heights: Case 1 or 2 from Fig 27.3-8 or minimum loads from 27.1.5

ASCE 7 Low-rise: Reference corner and Case A or B from Fig 28.3-1 or minimum loads from 28.3.4

Wind Dir - Direction of wind for loads with positive magnitude, also direction of MWFRS.

Surf Dir - Windward or leeward side of the building for loads in given direction

Prof - Profile (distribution)

Location - Start and end points on building element

Magnitude - Start = intensity of uniform and point loads or leftmost intensity of trapezoidal load, End = right intensity of trap load Trib Ht - Tributary height of area loads only

Notes:

All loads entered by the user or generated by program are specified (unfactored) loads. The program applies a load factor of 0.60 to wind loads before distributing them to the shearlines.

DEAD LOADS (for hold-down calculations)

Shear	Level	Profile	Tributary	Locatio	n [ft]	Mag [lbs,p	sf,psi]
Line			Width [ft]	Start	End	Start	End
A	1	Line		0.00	26.50	135.0*	
В	1	Line		0.50	11.67	54.0*	
С	1	Line		0.00	26.50	135.0*	
1	1	Line		-5.50	19.50	135.0*	
2	1	Line		-5.50	0.08	54.0*	
3	1	Line		-5.50	19.50	135.0*	

BUILDING MASSES

						Magnit	tude	Trib
Building	Block	Wall	Profile	Locatio	n [ft]	[lbs,plf	,psf]	Width
Element		Line		Start	End	Start	End	[ft]
Boof	Block 1	1	Line	-6 58	20 50	285 0	285 0	
		3						
		1						
		1	-					
L Gable	Block 1	3	Line	-5.58	6.96	108.6	0.0	
R Gable	Block 1	3	Line	6.96	19.50	0.0	108.6	
Roof	Block 1		Line	-1.00	27.50	270.8	270.8	
Roof	Block 1	С	Line	-1.00	27.50	270.8	270.8	
Wall 1-1	n/a	1	Line	-5.50	19.50	67.5	67.5	
Wall 2-1		2	Line	-5.50	0.08	27.0	27.0	
Wall 3-1	n/a	3	Line	-5.50	19.50	67.5	67.5	
Wall A-1	n/a	A	Line	0.00	26.50	67.5	67.5	
Wall B-1	n/a	В	Line	0.50	11.67	27.0	27.0	
Wall C-1	n/a	С	Line	0.00	26.50	67.5	67.5	
	Element Roof Roof L Gable L Gable R Gable Roof Roof Wall 1-1 Wall 2-1 Wall 2-1 Wall 3-1 Wall A-1 Wall B-1	ElementRoofBlock 1RoofBlock 1R GableBlock 1L GableBlock 1R GableBlock 1RoofBlock 1RoofBlock 1Nall 1-1n/aWall 2-1n/aWall 3-1n/aWall A-1n/aWall B-1n/a	ElementLineRoofBlock 11RoofBlock 13R GableBlock 11L GableBlock 11L GableBlock 13R GableBlock 13RoofBlock 13RoofBlock 1CWall 1-1n/a1Wall 2-1n/a3Wall 3-1n/a3Wall A-1n/aAWall B-1n/aB	ElementLineRoofBlock 11RoofBlock 13R GableBlock 11L GableBlock 11L GableBlock 13LineBlock 13K GableBlock 13R GableBlock 13RoofBlock 13RoofBlock 1CWall 1-1n/a1Mall 2-1n/a2Wall 3-1n/a3Wall A-1n/aAWall B-1n/aB	Element Line Start Roof Block 1 1 Line -6.58 Roof Block 1 3 Line -6.58 Roaf Block 1 3 Line -6.58 R Gable Block 1 1 Line -6.58 L Gable Block 1 1 Line -5.58 L Gable Block 1 3 Line -5.58 R Gable Block 1 3 Line -5.58 R Gable Block 1 3 Line -5.58 Roof Block 1 3 Line -1.00 Roof Block 1 C Line -1.00 Wall 1-1 n/a 1 Line -5.50 Wall 2-1 n/a 2 Line -5.50 Wall 3-1 n/a 3 Line -5.50 Wall A-1 n/a B Line 0.00 Wall B-1 n/a B Line 0.50	Element Line Start End Roof Block 1 1 Line -6.58 20.50 Roof Block 1 3 Line -6.58 20.50 Roof Block 1 3 Line -6.58 20.50 R Gable Block 1 1 Line -6.58 20.50 L Gable Block 1 1 Line -6.58 20.50 L Gable Block 1 1 Line -6.58 6.96 L Gable Block 1 3 Line -5.58 6.96 R Gable Block 1 3 Line -1.00 27.50 Roof Block 1 C Line -1.00 27.50 Wall 1-1 n/a 1 Line -5.50 19.50 Wall 2-1 n/a 2 Line -5.50 19.50 Wall 3-1 n/a 3 Line -5.50 19.50 Wall A-1 n/a B <t< td=""><td>Building Element Block Wall Line Profile Location [ft] Start [lbs,plf End Roof Block 1 1 Line -6.58 20.50 285.0 Roof Block 1 3 Line -6.58 20.50 285.0 Roof Block 1 1 Line -6.58 20.50 285.0 R Gable Block 1 1 Line -5.58 6.96 108.6 L Gable Block 1 1 Line -5.58 6.96 108.6 R Gable Block 1 3 Line -5.58 6.96 108.6 R Gable Block 1 3 Line -1.00 27.50 270.8 Roof Block 1 C Line -1.00 27.50 270.8 Wall 1-1 n/a 2 Line -5.50 19.50 67.5 Wall 2-1 n/a 2 Line -5.50 19.50 67.5 Wall 3-1 n/a 3</td><td>ElementLineStartEndStartEndRoofBlock 11Line-6.5820.50285.0285.0RoofBlock 13Line-6.5820.50285.0285.0R GableBlock 11Line-5.586.96108.60.0L GableBlock 11Line-5.586.96108.60.0L GableBlock 13Line-5.586.96108.60.0R GableBlock 13Line-5.586.96108.60.0R GableBlock 13Line-5.586.96108.60.0RoofBlock 13Line-1.0027.50270.8270.8RoofBlock 1CLine-1.0027.50270.8270.8Wall 1-1n/a1Line-5.5019.5067.567.5Wall 2-1n/a2Line-5.5019.5067.567.5Wall 3-1n/a3Line-5.5019.5067.567.5Wall A-1n/aBLine0.0026.5067.567.5Wall B-1n/aBLine0.5011.6727.027.0</td></t<>	Building Element Block Wall Line Profile Location [ft] Start [lbs,plf End Roof Block 1 1 Line -6.58 20.50 285.0 Roof Block 1 3 Line -6.58 20.50 285.0 Roof Block 1 1 Line -6.58 20.50 285.0 R Gable Block 1 1 Line -5.58 6.96 108.6 L Gable Block 1 1 Line -5.58 6.96 108.6 R Gable Block 1 3 Line -5.58 6.96 108.6 R Gable Block 1 3 Line -1.00 27.50 270.8 Roof Block 1 C Line -1.00 27.50 270.8 Wall 1-1 n/a 2 Line -5.50 19.50 67.5 Wall 2-1 n/a 2 Line -5.50 19.50 67.5 Wall 3-1 n/a 3	ElementLineStartEndStartEndRoofBlock 11Line-6.5820.50285.0285.0RoofBlock 13Line-6.5820.50285.0285.0R GableBlock 11Line-5.586.96108.60.0L GableBlock 11Line-5.586.96108.60.0L GableBlock 13Line-5.586.96108.60.0R GableBlock 13Line-5.586.96108.60.0R GableBlock 13Line-5.586.96108.60.0RoofBlock 13Line-1.0027.50270.8270.8RoofBlock 1CLine-1.0027.50270.8270.8Wall 1-1n/a1Line-5.5019.5067.567.5Wall 2-1n/a2Line-5.5019.5067.567.5Wall 3-1n/a3Line-5.5019.5067.567.5Wall A-1n/aBLine0.0026.5067.567.5Wall B-1n/aBLine0.5011.6727.027.0

Legend:

Force Dir - Direction in which the mass is used for seismic load generation, E-W, N-S, or Both

Building element - Roof, gable end, wall or floor area used to generate mass, wall line for user-applied masses, Floor F# - refer to Plan View for floor area number

Wall line - Shearline that equivalent line load is assigned to

Location - Start and end points of equivalent line load on wall line Trib Width. - Tributary width; for user applied area loads only

SEISMIC LOADS

Level 1					
Force	Profile	Locatio	n [ft]	Mag [lbs,p	lf,psf]
Dir		Start	End	Start	End
E-W	Line	-6.58	-5.58	57.1	57.1
E-W	Line	-5.58	-5.50	57.1	57.2
E - W	Point	-5.50	-5.50	179	179
E-W	Line	-5.50	0.08	73.5	83.2
E-W	Line	0.08	6.96	80.5	92.4
E-W	Point	0.17	0.17	30	30
E-W	Line	6.96	19.50	92.4	70.6
E-W	Point	19.50	19.50	179	179
E-W	Line	19.50	20.50	57.1	57.1
N-S	Line	-1.00	0.00	54.3	54.3
N-S	Point	0.00	0.00	306	306
N-S	Line	0.00	0.50	67.8	67.8
N-S	Line	0.50	11.67	70.5	70.5
N-S	Line	11.67	26.50	67.8	67.8
N-S	Point	11.75	11.75	15	15
N-S	Point	26.50	26.50	306	306
N-S	Line	26.50	27.50	54.3	54.3

Legend:

Loads in table can be accumulation of loads from several building masses, so they do not correspond with a particular building element. Location - Start and end of load in direction perpendicular to seismic force direction

Notes:

All loads entered by the user or generated by program are specified (unfactored) loads. The program applies a load factor of 0.70 and redundancy factor to seismic loads before distributing them to the shearlines.

Design Summary

SHEARWALL DESIGN

Wind Shear Loads, Flexible Diaphragm

All shearwalls have sufficient design capacity.

Seismic Loads, Flexible Diaphragm

All shearwalls have sufficient design capacity.

HOLD-DOWN DESIGN

Wind Loads, Flexible Diaphragm All hold-downs have sufficient design capacity.

Seismic Loads, Flexible Diaphragm

All hold-downs have sufficient design capacity.

COMPRESSION FORCE DESIGN

Wind Loads, Flexible Diaphragm

Bottom plate has sufficient perpendicular-to-grain compressive capacity under all wall end studs.

Seismic Loads, Flexible Diaphragm

Bottom plate has sufficient perpendicular-to-grain compressive capacity under all wall end studs.

This Design Summary does not include failures that occur due to excessive story drift from ASCE 7 CC.2.2 (wind) or 12.12 (seismic). Refer to Story Drift table in this report to verify this design criterion. Refer to the Deflection table for possible issues regarding fastener slippage (SDPWS Table C4.2.3D).

Flexible Diaphragm Wind Design ASCE 7 Directional (All Heights) Loads

SHEAR RESULTS

N-S	w	For	ASD	Shear Force	[plf]	Asp	-Cub		Alle	owable \$	Sheaı	r [plf]		Resp.
Shearlines	Gp	Dir	v	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Со	С	Cmb	V [lbs]	Ratio
Line 1														
Level 1														
Ln1, Lev1	1	Both	98.3	160.6	1417	-	.93	-	223	0.66		223	3220	0.44
Line 3														
Ln3, Lev1	1	Both	97.7	104.9	1417	-	.93	-	340	1.00		340	4928	0.29
E-W	w	For	ASD	Shear Force	[plf]	Asp	-Cub		Alle	owable \$	Shear	r [plf]		Resp.
Shearlines	Gp	Dir	v	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Со	С	Cmb	V [lbs]	Ratio
Line A														
Level 1														
LnA, Lev1	-	Both	-	-	1116	-	-	-	365	-		-	1825	-
Wall A-1	1	Both	-	-	1116	-	1.0	-	365	-		-	1825	-
Seg. 1	-	Both	0.0	-	0	-	1.0	-	365	-		365	-	-
Seg. 2	-	Both	0.0	-	0	-	1.0	-	365	-		365	-	-
Seg. 3	-	Both	223.1	-	1116	-	1.0	-	365	-		365	1825	0.61
Seg. 4	-	Both	0.0	-	0	-	1.0	-	365	-		365	-	-
Line C					[
LnC, Lev1	1	Both	51.7	55.9	1112	-	.93	-	338	1.00		338	7265	0.15

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir - Direction of wind force along shearline.

v – Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS)

vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.3.4

FTAO walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers. V - ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment

Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.5.3. For segment or FTAO pier: Aspect ratio factor from SDPWS 4.3.5.5.1. For perforated wall: Either Cub or sum bi / FHS, where bi is segment length adjusted per SDPWS 4.3.3.4.

Int, Ext - Nominal unit shear capacity of interior and exterior sheathing, factored by Table 4.3-1 Note 3 for framing specific gravity and Note 10 for presence of hold-downs. For wall segments, also include unblocked factor Cub and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-6.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using Eqns. 4.3-3,-4.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V – Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "S" indicates that the seismic design criterion was critical in selecting wall.

Notes:

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,1.

Level 1						Tensile Ho	ld-down			_	
Line-		Locati	ion [ft]	Load	or Com	pressive S	Stud Force [II	bs]		Cap	Crit
Wall	Posit'n	Х	Ŷ	Case	Shear	Dead	Uplift -	Cmb'd	Hold-down	[lbs]	Resp.
Line 1											
	V Elem	0.00	-5.54	1	0	6		6	Compression		
1-1	L End	0.00	-5.37	1	0	6		6	Compression	10312	0.00
1-1	L End	0.00	0.21	1	2070	786		1284	HDU2-SDS	3075	0.42
1-1	L End	0.00	0.21	1	-2070	1311		3381	Compression	10312	0.33
1-1	R End	0.00	19.38	1	2070	786		1284	HDU2-SDS	3075	0.42
1-1	R End	0.00	19.38	1	-2070	1311		3381	Compression	10312	0.33
Line 3					1				_		
3-1	L End	26.50	-5.37	1	0	169		169	Compression	10312	0.02
3-1	L Op 1	26.50	-3.12	1	0	169		169	Compression	10312	0.02
3-1	L End	26.50	1.13	1	1353	749		604	HDU2-SDS	3075	0.20
3-1	L End	26.50	1.13	1	-1353	1249		2602	Compression	10312	0.25
3-1	R End	26.50	19.38	1	1353	749		604	HDU2-SDS	3075	0.20
3-1	R End	26.50	19.38	1	-1353	1249		2602	Compression	10312	0.25
Line A					1						
	V Elem	0.12	-5.50	1	0	34		34	Compression		
	V Elem	0.38	-5.50	1	0	34		34	Compression		
	V Elem	11.63	-5.50	1	0	146		146	Compression		
	V Elem	13.54	-5.50	1	0	146		146	Compression		
A-1	R Op 2	16.79	-5.50	1	2114	203		1911	HDU2-SDS	3075	0.62
A-1	R Op 2	16.79	-5.50	1	-2114	338		2451	Compression	10312	0.24
A-1	L Op 3	21.54	-5.50	1	2114	203		1911	HDU2-SDS	3075	0.62
A-1	L Op 3	21.54	-5.50	1	-2114	338		2451	Compression	10312	0.24
	V Elem	24.79	-5.50	1	0	124		124	Compression		
	V Elem	26.38	-5.50	1	0	124		124	Compression		
Line C					1				-		
C-1	L End	0.12	19.50	1	-509	1789		2297	Compression	10312	0.22
C-1	R End	26.38	19.50	1	-509	1789		2297	Compression	10312	0.22

Hold-Down and Compression Design (flexible wind design)

Legend:

Line-Wall:

At wall or opening - Shearline and wall number

At vertical element – Shearline

Posit'n – Position of stud pack that hold-down is attached to or which is applying compression force:

V Elem – Vertical element: column or strengthened studs required where not at wall end or opening

L or R End – At left or right wall end

L or R Op n - At left or right side of opening n

t @ Op n – Uplift force t at opening n from offset opening in perforated wall above, from SDPWS 4.3.6.4.2.1

Location – Co-ordinates in Plan View

Load Case – Results are for critical load case:

ASCE 7 All Heights: Case 1 or 2 from Fig. 27.3-8

ASCE 7 Low-rise: Windward corner(s) and Case A or B from Fig. 28.3-1

ASCE 7 Minimum loads (27.1.5 / 28.3.4): "Min"

Tensile Hold-down or Compressive Stud Force – Upwards force on hold-down at one end of the wall or downward force on bottom plate under studs at the other end, for each force direction. Includes forces transferred from upper levels.

Shear – Overturning component = V x h / beff from SDPWS Eqn. 4.3-7; V = force on segment, ASD-factored by 0.60; h = wall height, beff = wall segment length – (tension stud pack width + hold-down anchor bolt offset) – (1/2 compression stud pack width). For perforated walls = V x h / Co sum (bi) from SDPWS Eqn. 4.3-8.

Dead – Dead load resisting component, factored for ASD by 0.60 for tension and 1.0 for compression

Uplift – Uplift wind load component, factored for ASD by 0.60

Cmb'd – Sum of ASD-factored overturning, dead and uplift forces. May also include the uplift force t from perforated walls from SDPWS

4.3.6.4.2.1 when openings are staggered.

Hold-down – Device model number from hold-down database; "Compression" for bearing of end stud pack on bottom plate

Cap – Hold-downs: Allowable ASD tension load from database; Compression: allowable ASD bearing force = Ct CM Cb Fcp A; A = cross sectional area of end studs. Refer to Framing materials table for details

Crit. Resp. - Critical Response = Combined ASD force / Allowable ASD tension load

Notes:

HDU2-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5" : Uses 6 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

Refer to the Shear Line Dimensions table for wall height h, effective segment length beff and perforated wall adjusted sum of bi, to the Story Table for joist depth, and to the Shear Results table for perforated factor Co.

Most severe of wind load cases is used for overturning calculation.

Designer is responsible for design of connection from wall to floor or foundation for shear force shown in Shear Results table. Refer to SDPWS 4.3.6.4.3 for foundation anchor bolt requirements.

COLLECTOR FORCES (flexible wind design)

Level 1		- J /			Drag S	Strut	Strap/Blocking
Line-	Position on Wall	Locatior	n [ft]	Load	Force	[lbs]	Force [lbs]
Wall	or Opening	Х	Ϋ́	Case	>	<	> <
Line 1	- · · · -						
1-1	Right Opening 1	0.00	0.08		-316	316	
1-1	Left Opening 2	0.00	2.92		-920	920	
1-1	Right Opening 2	0.00	7.92		-1204	1204	
Line 3							
3-1	Right Opening 1	26.50	1.00		-368	368	
3-1	Left Opening 2	26.50	4.00		-328	328	
3-1	Right Opening 2	26.50	8.00		-555	555	
Line A							
A-1	Right Opening 2	16.67	-5.50		-702	702	
A-1	Left Opening 3	21.67	-5.50		203	-203	
Line C	1 5						
C-1	Left Opening 1	3.75	19.50		52	-52	
C-1	Right Opening 1	5.75	19.50		-81	81	
C-1	Left Opening 2	20.42	19.50		123	-123	
C-1	Right Opening 2	23.42	19.50		-43	43	
						-	

Legend:

Line-Wall - Shearline and wall number

Position ...- Side of opening or wall end that drag strut is attached to

Location - Co-ordinates in Plan View

Load Case - Results are for critical load case:

ASCE 7 All heights Case 1 or 2

ASCE 7 Low-rise corner; Case A or B

Drag strut Force - Axial force in transfer element at openings, gaps, or changes in design shear along shearline. + : tension; - : compression. Based on ASD-factored shearline force (vmax from 4.3.6.4.1.1 for perforated walls)

Strap/Blocking Force - For FTAO walls, force transferred from above and below opening to shearwall pier.

-> Due to shearline force in the west-to-east or south-to-north direction

<- Due to shearline force in the east-to-west or north-to-south direction

MWFRS DEFLECTION (flexible wind design)

These deflections are used to determine shearwall stiffness for force distribution

Wall,	W						Bend	ling	Shear		Nail slip		Hold	Total
segment	Gp	Dir	Srf	v	b	h	Α	Defl	Defl	Vn	en	Defl	Defl	Defl
				plf	ft	ft	sq.in	in	in	lbs	in	in	in	in
Level 1														
Line 1														
1-1	1	Both	Ext	160.6	13.37	9.00	16.5	.003	.019	80	.014	.097	0.10	0.22
Line 3														
3-1	1	Both	Ext	104.9	13.50	9.00	16.5	.002	.012	52	.006	.044	0.09	0.15
Line A														
A-1,3	1	Both	Ext	223.1	5.00	9.00	16.5	.010	.026	112	.027	.179	0.31	0.53
Line C														
C-1	1	Both	Ext	55.9	19.90	9.00	16.5	.001	.006	28	.002	.013	0.00	0.02

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B.

W Gp – Wall design group, refer to Sheathing and Framing Materials tables.

Dir – Force direction.

Srf – Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions.

v – ASD shear force per unit distance on wall segment.

Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table. Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b – Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h – Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged. Defl – Horizontal shear wall deflection due to given term:

Bending = 8vh^3 / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table For i studs at one end and j at the other, $A = 2 (i^2 j + j^2 i) / (i + j)^2 x$ area of one stud, based on Ex. C4.3.4-3

Shear = vh / Gvtv; Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table.

Nail slip = $0.75 \text{ h} \times \text{en}$; en from Table C4.2.3D, of form aVn^h for WSP, varies linearly to published value for other materials.

Vn – ASD shear force per nail along panel edge.

Hold – Anchorage system (hold-down) = da x h / beff.

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl – Deflection from bending + shear + nail slip + hold-down, as per Eqn. 4.3-2. For FTAO walls, the average of the values for the segments, as per APA T555.

SERVICEABILITY DEFLECTION (flexible wind design)

These deflections are used to determine story drift

Wall,	W						Bend	ling	Shear		Nail slip		Hold	Total
segment	Gp	Dir	Srf	v	b	h	Α	Defl	Defl	Vn	en	Defl	Defl	Defl
_				plf	ft	ft	sq.in	in	in	lbs	in	in	in	in
Level 1				-										
Line 1														
1-1	1	Both	Ext	296.5	13.37	9.00	16.5	.005	.034	148	.045	.305	0.13	0.47
Line 3														
3-1	1	Both	Ext	193.8	13.50	9.00	16.5	.003	.023	97	.020	.138	0.10	0.26
Line A														
A-1,3	1	Both	Ext	412.0	5.00	9.00	16.5	.018	.048	206	.084	.564	0.41	1.04
Line C														
C-1	1	Both	Ext	103.2	19.90	9.00	16.5	.001	.012	52	.006	.042	0.00	0.06

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B.

W Gp – Wall design group, refer to Sheathing and Framing Materials tables.

Dir – Force direction.

Srf – Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions.

v – Shear force per unit distance on wall segment using 1.0 Wa = wind load based on serviceability wind speeds from ASCE 7 CC.2.2, Figs. CC.2-1 - CC.2-4.

Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table.

Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b – Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h – Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged. Defl – Horizontal shear wall deflection due to given term:

Bending = $8vh^3$ / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table For i studs at one end and j at the other, A = 2 (i^2 j + j^2 i) / (i + j)^2 x area of one stud, based on Ex. C4.3.4-3

Shear = vh / Gvtv; Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table.

Nail slip = 0.75 h x en; en from Table C4.2.3D, of form aVn^b for WSP, varies linearly to published value for other materials.

Vn – Serviceability shear force per nail along panel edge.

Hold – Anchorage system (hold-down) = da x h / beff.

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl – Deflection from bending + shear + nail slip + hold-down, as per Eqn. 4.3-2.

For FTAO walls, the average of the values for the segments, as per APA T555.

22.98

0.01

19

Horz

Defl

in

0.10

0.09

0.31

0.00

da

in

0.01

Tensio Crush Total Wall, Hold-Vert. Displacement Slippage Shrink Comp. n Vf Dir force Manuf Add +Extra segment down da da force da lbs in in lbs in lbs in in in Level 1 Line 1 1-1 Both HDU2-SDS 1284 .037 .000 0.037 .105 3381 0.01 0.15 Line 3 3-1 HDU2-SDS 604 .017 .000 0.017 .105 2602 0.01 0.13 Both Line A .055 .000 .105 1911 0.055 2451 0.01 A-1.3 Both HDU2-SDS 0.17 Line C

.000

MWFRS HOLD-DOWN DISPLACEMENT (flexible wind design)

These displacements are used to determine deflections for force distribution

C-1 Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B Dir – Force direction

.000

-564

Tens., Comp. force – Accumulated ASD hold-down tension force T and end stud compression force C from overturning, dead loads and wind uplift da – Vertical displacements due to the following components:

0.000

Vert. Displacement - Elongation when slippage calculated separately; displacement when combined elongation/slippage used Manuf - Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD uplift force / ASD hold-down capacity) x max ASD elongation or displacement

* - Maximum strength-level elongation or displacement is used. May result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es)

Ab = bolt cross-sectional area

Both

Es = steel modulus = 29000000 psi

L = Lb - Lb

Lb = Total bolt length shown in Storey Information table

HDU2-SDS

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage - Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = Vf / (270,000 D^1.5) (NDS 11.3.6); D = bolt diameter, Vf = Tension force T / number of fasteners

Shrink + Extra – Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (24% fabrication – 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table

Crush – Deformation of bottom plate at compression end of wall segment

= 0.02" x [r/0.73, r < 0.73; (1 + (r - 0.73)/0.27), 0.73 < r < 1; 2 r^3, r > 1]

r = fcp / Fcp'; Fcp' = Ct CM Fcp; fcp = C / A, A = cross sectional area of end studs

Total da – Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl - Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) h and b are shown in Deflection table, beff in the Shear Wall Dimensions table

SERVICEABILITY HOLD-DOWN DISPLACEMENT (flexible wind design)

These displacements are used to determine deflections for story drift

Wall,		Hold-	Tensio n	Vert.	Displace	ment	Slip	bage	Shrink	Comp.	Crush	Total	Horz
segment	Dir	down	force Ibs	Manuf in	Add in	da in	Vf Ibs	da in	+Extra in	force Ibs	da in	da in	Defl in
Level 1													
Line 1													
1-1	Both	HDU2-SDS	2371	.068	.000	0.068	-	-	.105	5275	0.01	0.19	0.13
Line 3													
3-1	Both	HDU2-SDS	1115	.032	.000	0.032	-	-	.105	3882	0.01	0.15	0.10
Line A													
A-1,3	Both	HDU2-SDS	3529	.101	.000	0.101	-	-	.105	4277	0.01	0.22	0.41
Line C													
C-1	Both	HDU2-SDS	-1042	.000	.000	0.000	-	-	.000	2922	0.01	0.01	0.00

Legend:

Wall, segment – *Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B Dir – Force direction*

Tens., Comp. force – Accumulated hold-down tension force T and end stud compression force C from overturning, dead loads and wind uplift using load combination D + Wa from ASCE 7 CC.2.2

Wa = wind load based on serviceability wind speeds from ASCE 7 CC.2.2, Figs. CC.2-1 - CC.2-4

da – Vertical displacements due to the following components:

Vert. Displacement – Elongation when slippage calculated separately; displacement when combined elongation/slippage used Manuf – Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD uplift force / ASD hold-down capacity) x max strength-level elongation or displacement

* - Maximum strength-level elongation or displacement is used. May result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es)

Ab = bolt cross-sectional area

Es = steel modulus = 29000000 psi

L = Lb - Lh

Lb = Total bolt length shown in Storey Information table

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage – Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = Vf / (270,000 D^1.5) (NDS 11.3.6); D = bolt diameter, Vf = Tension force T / number of fasteners

Shrink + Extra – Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (24% fabrication – 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table

Crush – Deformation of bottom plate at compression end of wall segment

 $= 0.02" \times [r/0.73, r < 0.73; (1 + (r - 0.73)/0.27), 0.73 < r < 1; 2r^3, r > 1]$

r = fcp / Fcp'; Fcp' = Ct CM Fcp; fcp = C / A, A = cross sectional area of end studs

Total da – Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl – Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) h and b are shown in Deflection table, beff in the Shear Wall Dimensions table

STORY DRIFT (flexible wind design)

		Wall	Actual Sto	ry Drift (in)	Allow	able Story I	Drift
Level	Dir	height	Max	Line	hs	Drift	Ratio
		ft	defl		ft	in	
1		9.00			9.00		
	N<->S		0.47	1		1.08	0.44
	E<->W		1.04	A		1.08	0.96

Legend:

Max defl – Largest deflection for any shearline on level in this direction; refer to Serviceability Deflections table Line – Shearline with largest deflection on level in this direction

hs – Story height = Height of walls plus joist depth between this level and the one above.

Drift = Allowable story drift on this level = story height / 100

Ratio - Proportion of allowable story drift experienced, on this level in this direction.

WoodWorks® Shearwalls

Flexible Diaphragm Seismic Design

SEISMIC INFORMATION

Level	Mass	Area	Story Shea	ar Fx [lbs]	Shear Resis	tance [lbs]		Diaphragm	Force [lbs	5]
	[lbs]	[sq.ft]	E-W	N-S	E-W	N-S	E	-W	I	N-S
							Fpx	Design	Fpx	Design
1 All	25567 25567	662.5 -	1793 2561	1793 2561	6493 -	5820 -	2331	2331 -	2331 _	2331

Legend:

Mass – Sum of all generated and input building masses on level = wx in ASCE 7 Eqn. 12.8-12.

Story Shear - Total ASD-factored shear force induced at level x from Eqn. 12.8-11.

Shear Resistance – Lateral design strength of all shear-resisting elements on story, for use in weak story evaluation (4.1.8).

Diaphragm Force – used by Shearwalls only for drag strut forces, as per Exception to 12.10.2.1.

Fpx - Minimum ASD-factored force for diaphragm design from Eqns. 12.10-1, -2, and -3.

Design = The greater of the story shear and Fpx + transfer forces from discontinuous shearlines, factored by overstrength (omega) as per 12.10.1.1. Omega = 2.5 as per 12.2-1.

Redundancy Factor p (rho):

E-W 1.00, N-S 1.00

Automatically calculated according to ASCE 7 12.3.4.2.

Vertical Earthquake Load Ev

Ev = 0.2 Sds D; Sds = 0.65; Ev = 0.130 D unfactored; 0.091 D factored; total dead load factor: 0.6 - 0.091 = 0.509 tension, 1.0 + 0.091 = 1.091 compression.

N-S	w	For	ASD	Shear Force	e [plf]	Asp	-Cub		Alle	owable \$	Shea	r [plf]		Resp.
Shearlines	Gp	Dir	v	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Со	С	Cmb	V [lbs]	Ratio
Line 1														
Level 1														
Ln1, Lev1	1	Both	62.6	102.3	903	-	.93	-	160	0.66		160	2300	0.39
Line 3														
Ln3, Lev1	1	Both	61.4	65.9	890	-	.93	-	243	1.00		243	3520	0.25
E-W	w	For	ASD	Shear Force	e [plf]	Asp	-Cub		Alle	owable	Shea	r [plf]		Resp.
Shearlines	Gp	Dir	v	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Со	С	Cmb	V [lbs]	Ratio
Line A														
Level 1														
LnA, Lev1	-	Both	-	-	908	-	-	-	261	-		-	1304	-
Wall A-1	1^	Both	-	-	908	-	1.0	-	261	-		-	1304	-
Seg. 1	-	Both	0.0	-	0	-	1.0	-	261	-		261	-	-
Seg. 2	-	Both	0.0	-	0	-	1.0	-	261	-		261	-	-
Seg. 3	-	Both	181.7	-	908	-	1.0	-	261	-		261	1304	0.70
Seg. 4	-	Both	0.0	-	0	-	1.0	-	261	-		261	-	-
Line C														
LnC, Lev1	1	Both	41.1	44.4	885	_	.93	-	241	1.00		241	5189	0.17

SHEAR RESULTS (flexible seismic design)

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir – Direction of seismic force along shearline.

v – Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS)

vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.3.4

FTAO walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers. V – ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.5.3. For segment or FTAO pier: Aspect ratio factor from SDPWS

Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.5.3. For segment or FTAO pier: Aspect ratio factor from SDPWS 4.3.5.5.1. For perforated wall: Either Cub or sum bi / FHS, where bi is segment length adjusted per SDPWS 4.3.3.4.

Int, Ext - Nominal unit shear capacity of interior and exterior sheathing, factored by Table 4.3-1 Note 3 for framing specific gravity and Note 10 for presence of hold-downs. For wall segments, also include unblocked factor Cub and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-6.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using Eqns. 4.3-3,-4.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V – Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "W" indicates that the wind design criterion was critical in selecting wall.

Notes:

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,1.

Level 1					Tensile Hold	-down				
Line-		Location [ft]		or Cor	npressive Stu	d Force [lbs		Cap	Crit	
Wall	Posit'n	х	Ŷ	Shear	Dead	Ev	- Cmb'd	Hold-down	[lbs]	Resp.
Line 1										-
	V Elem	0.00	-5.54	0	6	1	6	Compression		
1-1	L End	0.00	-5.37	0	6	1	6	Compression	10312	0.00
1-1	L End	0.00	0.21	1319	786	119	652	HDU2-SDS	3075	0.23
1-1	L End	0.00	0.21	-1319	1311	119	2749	Compression	10312	0.2
1-1	R End	0.00	19.38	1319	786	119	652	HDU2-SDS	3075	0.23
1-1	R End	0.00	19.38	-1319	1311	119	2749	Compression	10312	0.2
Line 3										
3-1	L End	26.50	-5.37	0	169	15	184	Compression	10312	0.02
3-1	L Op 1	26.50	-3.12	0	169	15	184	Compression	10312	0.02
3-1	L End	26.50	1.13	850	749	114	215	HDU2-SDS	3075	0.0
3-1	L End	26.50	1.13	-850	1249	114	2212	Compression	10312	0.23
3-1	R End	26.50	19.38	850	749	114	215	HDU2-SDS	3075	0.0
3-1	R End	26.50	19.38	-850	1249	114	2212	Compression	10312	0.23
Line A										
	V Elem	0.12	-5.50	0	34	3	37	Compression		
	V Elem	0.38	-5.50	0	34	3	37	Compression		
	V Elem	11.63	-5.50	0	146	13	159	Compression		
	V Elem	13.54	-5.50	0	146	13	159	Compression		
A-1	R Op 2	16.79	-5.50	1721	203	31	1549	HDU2-SDS	3075	0.50
A-1	R Op 2	16.79	-5.50	-1721	338	31	2089	Compression	10312	0.20
A-1	L Op 3	21.54	-5.50	1721	203	31	1549	HDU2-SDS	3075	0.50
A-1	L Op 3	21.54	-5.50	-1721	338	31	2089	Compression	10312	0.20
	V Elem	24.79	-5.50	0	124	11	135	Compression		
	V Elem	26.38	-5.50	0	124	11	135	Compression		
Line C								_		
C-1	L End	0.12	19.50	-405	1789	163	2356	Compression	10312	0.23
C-1	R End	26.38	19.50	-405	1789	163	2356	Compression	10312	0.23

Hold-Down and Compression Design (flexible seismic design)

Legend:

Line-Wall:

At wall or opening – Shearline and wall number

At vertical element – Shearline

Posit'n – Position of stud pack that hold-down is attached to:

V Elem – Vertical element: column or strengthened studs required where not at wall end or opening

L or R End – At left or right wall end

L or R Op n – At left or right side of opening n

t @ Op n – Uplift force t at opening n from offset opening in perforated wall above, from SDPWS 4.3.6.4.2.1

Location - Co-ordinates in Plan View

Tensile Hold-down or Compressive Stud Force – Upwards force on hold-down at one end of the wall or downward force on bottom plate under studs at the other end, for each force direction. Includes forces transferred from upper levels.

Shear – Overturning component = V x h / beff from SDPWS Eqn. 4.3-7; V = force on segment, ASD-factored by 0.70; h = wall height, beff = wall segment length – (tension stud pack width + hold-down anchor bolt offset) – (1/2 compression stud pack width). For perforated walls = V x h / Co sum (bi) from SDPWS Eqn. 4.3-8.

Dead – Dead load resisting component, factored for ASD by 0.60 for tension and 1.0 for compression

Ev - Vertical seismic load effect from ASCE 7 12.4.2.2 = -0.2 Sds x ASD factor x unfactored D = 0.152 SDS x factored D. Refer to Seismic Information table for more details.

Cmb'd – Sum of ASD-factored overturning, dead and vertical seismic forces. May also include the uplift force t from perforated walls from SDPWS 4.3.6.4.2.1 when openings are staggered.

Hold-down – Device model number from hold-down database; "Compression" for bearing of end stud pack on bottom plate

Cap – Hold-downs: Allowable ASD tension load from database; Compression: Allowable ASD bearing force = Ct CM Cb Fcp A; A = cross sectional area of end studs. Refer to Framing materials table for details.

Crit. Resp. - Critical Response = Combined ASD force/Allowable ASD tension load

Notes:

HDU2-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5" : Uses 6 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

Combined force from ASCE 7 2.4.1 load combination 10 = - (0.6D - 0.7Ev + 0.7Eh); Eh (from 12.4.2.1) = - shear overturning force

Refer to the Shear Line Dimensions table for wall height h, effective segment length beff and perforated wall adjusted sum of bi, to the Story Table for joist depth, and to the Shear Results table for perforated factor Co.

Designer is responsible for design of connection from wall to floor or foundation for shear force shown in Shear Results table. Refer to SDPWS 4.3.6.4.3 for foundation anchor bolt requirements.

		Drag S	Strut	Strap/Blocking		
Position on Wall	Location	[ft]	Force	[lbs]	Force [lbs]	
or Opening	X	Y		/	> <	
Shearline force			1174	1174		
Right Opening 1	0.00	0.08	-262	262		
Left Opening 2	0.00	2.92	-762	762		
Right Opening 2	0.00	7.92	-997	997		
Shearline force		1	1157	1157		
Right Opening 1	26.50	1.00	-301	301		
Left Opening 2	26.50	4.00	-268	268		
Right Opening 2	26.50	8.00	-453	453		
Shearline force		Í	1181	1181		
Right Opening 2	16.67	-5.50	-743	743		
Left Opening 3	21.67	-5.50	215	-215		
Shearline force		1	1150	1150		
Left Opening 1	3.75	19.50	54	-54		
Right Opening 1	5.75	19.50	-83	83		
5 1 5	20.42	19.50	127	-127		
Right Opening 2	23.42	19.50	-44	44		
	Position on Wall or Opening Shearline force Right Opening 1 Left Opening 2 Right Opening 2 Shearline force Right Opening 1 Left Opening 2 Shearline force Right Opening 2 Left Opening 3 Shearline force Left Opening 1 Right Opening 1 Left Opening 2	or OpeningXShearline force Right Opening 10.00 Left Opening 2Right Opening 20.00Shearline force Right Opening 126.50 26.50Shearline force Right Opening 226.50Shearline force Right Opening 316.67 21.67Shearline force Left Opening 321.67Shearline force Left Opening 13.75 5.75 Left Opening 2Shearline force Left Opening 15.75 20.42	Position on Wall or OpeningLocation [ft] XYShearline force Right Opening 10.000.08Left Opening 20.002.92Right Opening 20.007.92Shearline force Right Opening 126.501.00Left Opening 226.504.00Right Opening 226.508.00Shearline force Right Opening 216.67-5.50Shearline force Right Opening 321.67-5.50Shearline force 	Position on Wall or Opening Location [ft] X Drag S Force Shearline force Right Opening 1 0.00 0.08 -262 Left Opening 2 0.00 2.92 -762 Right Opening 2 0.00 7.92 -997 Shearline force Right Opening 1 26.50 1.00 -301 Left Opening 2 26.50 4.00 -268 Right Opening 2 26.50 8.00 -453 Shearline force Right Opening 3 21.67 -5.50 215 Shearline force Right Opening 3 116.67 -5.50 215 Shearline force Right Opening 1 3.75 19.50 54 Shearline force Left Opening 1 5.75 19.50 -83 Left Opening 2 20.42 19.50 127	Position on Wall or Opening Location [ft] X Drag Strut Force [lbs] Shearline force Right Opening 1 0.00 0.08 > > Shearline force Right Opening 2 0.00 2.92 -762 762 Shearline force Right Opening 1 26.50 1.00 -301 301 Left Opening 2 26.50 4.00 -268 268 Right Opening 2 26.50 4.00 -268 268 Right Opening 2 26.50 4.00 -268 268 Right Opening 2 26.50 8.00 -453 453 Shearline force Right Opening 3 21.67 -5.50 215 -215 Shearline force Left Opening 1 3.75 19.50 54 -54 Right Opening 1 5.75 19.50 54 -54 Right Opening 2 20.42 19.50 127 -127	

COLLECTOR FORCES (flexible seismic design)

Legend:

Line-Wall - Shearline and wall number

Position ...- Side of opening or wall end that drag strut is attached to

Location - Co-ordinates in Plan View

Drag strut Force - Axial force in transfer element at openings, gaps, or changes in design shear along shearline. + : tension; - : compression. Based on ASD-factored shearline force shown. For SDC C-F, it is the greater of the design shearline force and the diaphragm force Fpx, added to shearline force from story above and to forces transferred from discontinuous shearlines factored by overstrength (omega) as per 12.10.1.1. Refer to Seismic Information table for diaphragm forces and omega factor.

For SDC D-F, if horizontal torsional irregularities 2, 3, or 4 are input, or vertical irregularity 4 detected or input, 25% increase from 12.3.3.4 applied. For perforated walls, this force is converted to vmax using 4.3.6.4.1.1.

Strap/Blocking Force – For FTAO walls, force transferred from above and below opening to shearwall pier.

-> Due to shearline force in the west-to-east or south-to-north direction

<- Due to shearline force in the east-to-west or north-to-south direction

DEFLECTION (flexible seismic design)

Wall,	W						Bend	ding	Shear		Nail slip		Hold	Total
segment	Gp	Dir	Srf	v	b	h	Α	Defl	Defl	Vn	en	Defl	Defl	Defl
-				plf	ft	ft	sq.in	in	in	lbs	in	in	in	in
Level 1														
Line 1														
1-1	1	Both	Ext	146.2	13.37	9.00	16.5	.002	.017	73	.012	.081	0.10	0.20
Line 3														
3-1	1	Both	Ext	94.2	13.50	9.00	16.5	.002	.011	47	.005	.036	0.08	0.13
Line A														
A-1,3	1	Both	Ext	259.5	5.00	9.00	16.5	.011	.030	130	.035	.238	0.33	0.61
Line C														
C-1	1	Both	Ext	63.5	19.90	9.00	16.5	.001	.007	32	.003	.017	0.00	0.03
l eaend:														

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B.

W Gp – Wall design group, refer to Sheathing and Framing Materials tables.

Dir – Force direction.

Srf – Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions.

v – Unfactored (strength-level) shear force per unit distance on wall segment = ASD force / 0.70, as per ASCE 7 12.8.6,.

Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table.

Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b – Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h – Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged. Defl – Horizontal shear wall deflection due to given term:

Bending = $8vh^3$ / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table For i studs at one end and j at the other, A = 2 (i^2 j + j^2 i) / (i + j)^2 x area of one stud, based on Ex. C4.3.4-3

Shear = vh / Gvtv; Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table.

Nail slip = 0.75 h x en; en from Table C4.2.3D, of form aVn^b for WSP, varies linearly to published value for other materials.

Vn – Strength-level shear force per nail along panel edge.

Hold - Anchorage system (hold-down) = da x h / beff.

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl – Deflection from bending + shear + nail slip + hold-down, as per Eqn. 4.3-2.

For FTAO walls, the average of the values for the segments, as per APA T555.

HOLD-DOWN DISPLACEMENT (flexible seismic design)

Wall,		Hold-	Tensio n	Vert.	Displace	ement	Slip	page	Shrink	Comp.	Crush	Total	Horz
segment	Dir	down	force Ibs	Manuf in	Add in	da in	Vf Ibs	da in	+Extra in	force Ibs	da in	da in	Defl in
Level 1													
Line 1													
1-1	Both	HDU2-SDS	875	.025	.000	0.025	-	-	.105	3890	0.01	0.14	0.10
Line 3													
3-1	Both	HDU2-SDS	253	.008	.000	0.008	-	-	.105	3125	0.01	0.12	0.08
Line A													
A-1,3	Both	HDU2-SDS	2199	.059	.000	0.059	-	-	.105	2975	0.01	0.17	0.33
Line C													
C-1	Both	HDU2-SDS	-799	.000	.000	0.000	-	-	.000	3315	0.01	0.01	0.00

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B

Dir – Force direction

Tens., Comp. force – Accumulated strength-level hold-down tension force T and end compression force C from overturning, dead loads and vertical earthquake loads

da – Vertical displacements due to the following components:

Vert. Displacement - Elongation when slippage calculated separately; displacement when combined elongation/slippage used Manuf – Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD uplift force / ASD hold-down capacity) x max strength-level elongation or displacement

* - Maximum strength-level elongation or displacement is used. May result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es)

Ab = bolt cross-sectional area

Es = steel modulus = 29000000 psi

L = Lb - Lh

Lb = Total bolt length shown in Storey Information table

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage – Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = Vf / (270,000 D^1.5) (NDS 11.3.6); D = bolt diameter, Vf = Tension force T / number of fasteners Shrink + Extra – Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (24% fabrication – 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table

Crush – Deformation of bottom plate at compression end of wall segment

= 0.02" x [r/0.73, r < 0.73; (1 + (r - 0.73)/0.27), 0.73 < r < 1; 2 r^3, r > 1]

r = fcp / Fcp'; Fcp' = Ct CM Fcp; fcp = C / A, A = cross sectional area of end studs

Total da – Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl - Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) h and b are shown in Deflection table, beff in the Shear Wall Dimensions table

STORY DRIFT (flexible seismic design)

		Wall		Actual Story Drift (in)					Allowable Story Drift			
Level	Dir	height	Max	Line	Max	Center	C of M	C of M	hsx	Delta a	Ra	tio
		fť	dxe		dx	of Mass	dxe	dx	ft	in	Max	C of M
1		9.00							9.00	2.70		
	N<->S		0.20	1	0.58	13.16	0.16	0.45			0.21	0.17
	E<->W		0.61	A	1.86	12.33	0.32	1.00			0.69	0.37

ASCE 7 Eqn. 12.8-15: dx = dxe x Cd / le

Deflection amplification factor Cd from Table 12.2-1 = (E-W), 4.0 (N-S)

Importance factor le = 1.00

Legend:

Max dxe - Largest deflection for any shearline on level in this direction; refer to Deflections table

Line – Shearline with largest deflection on level in this direction

hsx – Story height in ASCE Table 12.12-1 = Height of walls plus joist depth between this level and the one above.

Max dx – Largest amplified deflection on level in this direction using ASCE 7 Eq'n 12.8-15

C of M dxe - Deflection at the center of mass of this level; from interpolating deflections at adjacent shearlines.

C of M dx - Amplified deflection at center of mass using Eq'n 12.8-15. Does not include differences between top and bottom diaphragm deflection. Delta a = Allowable story drift on this level from ASCE 7 Table 12.12-1

Ratio - Proportion of allowable story drift experienced, on this level in this direction.

Design Code: IBC 2021/AWC SDPWS 2021

SEISMIC LOAD GENERATION ASCE 7-16 12.8 Equivalent Lateral Force Procedure Site Information: Risk Category II - All others SFRS = Bearing wall structure Regular Site class D S1 = 0.35, (Fv = 1.95) SS = 0.84, (Fa = 1.16) Seismic Design Category D Ta: Calculated - refer to Equations and to Base Shear table, below R: Refer to Base Shear table below Legend: Cvx - Vertical distribution factor, level x Vx - Design story shear, level x Fx - Letonal fa V - Total design base shear R - Response modification factor Fx - Lateral force induced in level xIcAccepting mearing mearing forceFpx - Diaphragm design force, level xCu- Coefficient for upper limit on period T WTotal seismic dead load on structureCsSeismic design coefficientWxDead load tributary to story xSDSDesign short period spectral accelerationhxCeiling height of level x (floor of x+1)SDIDesign 1s spectral response accelerationhnHeight of structure to mid-roofSSMapped short period spectral accelerationFi,wi,hi,ViFx, etc. summed over levelsS1Mapped 1s spectral response acceleration Fi,wi,hi,Vi - Fx, etc. summed over levelsSi - Mapped short period spectral accelerationFi,wi,hi,Vi - Fx, etc. summed over levelsSi - Mapped ls spectral response accelerationVjx - Design force on shearline j, level xSi - Mapped ls spectral response accelerationVjx - Diaphragm design shearline forceFv - Velocity-based site coefficientVdjx - Vert. discontinuous shearline forceT - Fundamental period of vibrationVcjx - Collector shearline forceTmax - Maximumum period of vibrationFe,Fpe,we - Force, load from mass elementTa - Approximate period of vibration Fej,Fpej - Portion of Fe,Fpe applied to line j Omega - Overstrength factor SDC - Seismic Design Category SFRS - Seismic force resisting system Equations: $\begin{array}{ccc} F_{X} & = & C_{VX} & V \\ F_{X} & = & 0.01 & wx \end{array}$ Eqn 12.8-11 (SDC B-F) Eqn 1.4-1 (SDC A) Fpx = wx SUM(Fi)/SUM(wi), i = x to n Eqn 12.10-1 V = Cs W Eqn 12.8-1 = SUM(Fi),i = x to n Eqn 12.8-13 Vx Eqn 12.8-12 Note, 12.8-12 Cscalc = Sds Ie/REqn 12.8-2 Csmax = Sd1 Ie/(R T) Eqn 12.8-3 Csmin = max (0.044 Ie Sds, 0.01)Egn 12.8-5 Csmin = 0.5 S1 Ie/R (Sds >= 0.6g) Eqn 12.8-6 Ta = Ct $hn^{(3/4)}$, hn in m Ie = Ie(risk category) Eqn 12.8-7 Table 1.5-2 Tmax = Ta CuCu = Cu (SD1) 12.8.2 Table 12.8-1 = 2/3 Fa SS = 2/3 Fv S1 SDS Eqns 11.4-1,4-3 SD1 Eqns 11.4-2,4-4 Fa = Fa(SS, Site Class) Table 11.4-1 Fv = Fv(S1, Site Class) SDC = SDC(SDS, SD1, occupancy) Table 11.4-2 Tables 11.6-1,6-2 Omega = Omega(SFRS) Table 12.2-1 Fe = Fx we / wx Fpe = Fpx we / wx Assumption Assumption Vjx (flexible diaphragm) = SUM(Fej) + Vj,x+1 12.8.4 See Torsional Analysis Details, Vjx (rigid diaphragm) = F = Vx, CL = centroid of Fe's and Vj, x+1'sVpjx = Vjx using Fpe, and Omega * Vdj,x+1 12.10.1.1 12.10.2 (SDC A,B) Vcjx = Vjx Vcjx = max(Vjx,Vpjx) 12.10.2.1 - Exception (SDC C-F) User Input and Source: Site Classes A-F Table 20.3-1 Risk Category Table 1.5-1 Fa and Fv for site profile F, maybe E Site specific study R (also calculated) Table 12.2-1 T (also calculated using Ta) deformational analysis Irregularities 12.3.2,3; Tables 12.3-1,2 SFRS Table 12.2-1

Total Design Base Shear:

Ie	SDC	W (lbs)	SDS	SD1	Cu	Tmax	Та	k
1.00	D	25567	0.651	0.462	1.400	0.187	0.134	1.000
	R	Т	SS	SDS	Cscalc	Csmax Csm	in Cs	V (lbs)
N-S	6.5	0.134	0.84	0.651	0.100	0.530 0	.029 0.10	0 2561
E-W	6.5	0.134	0.84	0.651	0.100	0.530 0	.029 0.10	0 2561

The first SDS value shown, used for Seismic Design Category, diaphragm design force limits, and out-of-plane forces, is not limited by ASCE 7 12.8.1.3. SDS values shown in lower table are for Cs and Ev calculations and may implement 12.8.1.3.

Manually added or modified seismic loads and forces do not contribute to base shear.

Distribution of Base Shear to Levels:

Level	hx	WX	hx * wx	Cvx	Fx (lbs)	Vx (1)	os)
	(ft)	(lbs)	(ft-lbs)		N-S	E-W	N-S	E-W
1	9.00	25567	230103	1.00	2561	2561	2561	2561

Manually added or modified seismic loads and forces are not included in the distribution of base shear.

Unfactored seismic loads for Level 1 -

Dir. No.	Start	End	Profile	Magnitude From	(lbs, plf) To
N<->S 1	-1.00	0.00	Line	54.3	54.3
N<->S 2	0.00	0.50	Line	67.8	67.8
N<->S 3	0.00	0.00	Point	306	306
N<->S 4	0.50	11.67	Line	70.5	70.5
N<->S 5	11.67	26.50	Line	67.8	67.8
N<->S 6	11.75	11.75	Point	15	15
N<->S 7	26.50	27.50	Line	54.3	54.3
N<->S 8	26.50	26.50	Point	306	306
W<->E 1	-6.58	-5.58	Line	57.1	57.1
W<->E 2	-5.58	-5.50	Line	57.1	57.2
W<->E 3	-5.50	-5.50	Point	179	179
W<->E 4	-5.50	0.08	Line	73.5	83.2
W<->E 5	0.08	6.96	Line	80.5	92.4
W<->E 6	0.17	0.17	Point	30	30
W<->E 7	6.96	19.50	Line	92.4	70.6
W<->E 8	19.50	20.50	Line	57.1	57.1
W<->E 9	19.50	19.50	Point	179	179

Design Code: IBC 2021/AWC SDPWS 2021

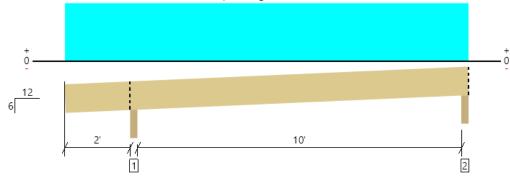
----------WIND LOAD GENERATION MWFRS Procedure: ASCE 7-16 Directional (All heights) C&C Procedure: ASCE 7 Ch. 30 Part 1 (h <= 60 ft.) _____ _____ Site Information: Enclosure = Partially enclosed Internal gust factor Cgi = 2.0 Occupancy = Category II - All others Exposure = Exposure C Rigid building - Static analysis Case 2 Loads at 75% Eccentricity N-S loads = 15%, E-W loads = 15% Ground Elevation: = 0 feet Legend: p - Design wind pressure (see Equations) h - Mean roof height q - Velocity pressure z - Height of interest G - Gust factor theta - Roof angle Cp - External pressure factor B - Building width GCp - Combined exposure and gust factor L - Building length V - Basic wind speed GCpi - Internal pressure coefficient Ke - Ground elevation factor Kz - Velocity pressure exposure coefficient Kzt - Topographic factor Kd - Wind directionality factor zg - Ground elevation c, zmin, epsilon-bar, 1 - Terrain exposure constants used to calculate G hE, zg, alpha - Terrain exposure constants used to calculate K Equations: MWFRS Pressure Equation: p = q * G * CpC&C Pressure Equation: p = q * (GCp - GCpi)Other Equations: $q = 0.00256 * Kz * Kd * Kzt * Ke * V^2$ $\dot{Ke} = e^{(-0.0000362 zg)}$ Kz = 2.01 * (max(z, hE) / zg) ^ (2 / a)) * h, zmin) / 33)) ^ (e))) ^ (0.63)))) ^ (1/2))) / (1 + 5.8 * (c * (max(0.6 * h, zmin) / 33) ^ (-1/6)))) Data (all loads): Kd = 0.85, GCpi = 0.55, Ke = 1.000 Terrain Exposure Constants: epsilon-bar = 0.20zmin = 15 1 = 500 alpha = 9.5 С = 0.20 = 900 zg = 15 hΕ Units: ft, lbs, ft/s MAIN WIND FORCE RESISTING SYSTEM (MWFRS) MWFRS - Block 1: EW x NS = 26.50 x 25.00 Mean Roof Height = 12.62 _____ Level Face Direction p q GCp Cp Gz z-G Kz z-K Kzt z-Kzt theta L/B h/L

 Level Face
 Direction p
 q
 GCp
 Cp
 GZ
 2-6
 KZ
 2-K
 KZT
 Z-KZT
 Let Z-KZT
 _____ -----

Job #23M-007 599 Walnut

V - Total shear line force(lbs) Vw - Total force on perforated shear wall(lbs) V / L - Diaphragm shear force(plf) v - Unit shear wall force(plf) vmax - Perforated shear wall force = Vw / Co / sum(bi) (plf) sum(bi) - Sum of wall segment lengths adjusted for narrow segments(ft) FHS - Sum of full - height segment lengths on wall(ft) L - Length of shear line, including gaps and openings(ft) Co - perforated wall shear capacity adjustment factor Seg w / vmax - Wall segment for which v is set to vmax. Other v - Force on the other wall segments = (Vw - vmax \star bs) / (FHS - bs) Drag strut force at - Sum of (V / L - v) * di along shear line (lbs), where di is the length of segments, openings or gaps.Locations shown are from start of shear line. Critical force - Largest drag strut force at each location derived from setting v = vmax on each segment independently(lbs) Shear wall 1-1, Level 1 $\mathbb{W}{\operatorname{\mathsf{->E}}}$ and $\mathbb{S}{\operatorname{\mathsf{->N}}}$ seismic design, flexible diaphragm vmax = 133.0, V/L = 46.9, Co = 0.660, FHS = 14.42, sum (bi) = 13.37 Seg w/ Seg Other Drag strut force at
 vmax
 Length
 v
 0.08
 2.92
 7.92

 1
 2.83
 68.8
 -262
 -18
 -253


 2
 11.58
 -129.6
 -262
 -762
 -997
 0.08 2.92 7.92 -262 -762 Critical force: -997 Shear wall 1-1, Level 1 $\mathbb{W}{\operatorname{\mathsf{->E}}}$ and $\mathbb{S}{\operatorname{\mathsf{->N}}}$ wind design, flexible diaphragm vmax = 160.6, V/L = 56.7, Co = 0.660, FHS = 14.42, sum (bi) = 13.37 Seg w/ Seg Other Drag strut force at 0.08 2.92 7.92 -316 -22 -305 vmax Length v 1 2.83 83.0 -316 2 11.58 -156.4 -316 -920 -1203 Critical force: -316 -920 -1203 Shear wall 1-1, Level 1 $\texttt{E}{\operatorname{\mathsf{->W}}}$ and $\texttt{N}{\operatorname{\mathsf{->S}}}$ wind design, flexible diaphragm vmax = 160.6, V/L = 56.7, Co = 0.660, FHS = 14.42, sum (bi) = 13.37 Seg w/ Seg Other Drag strut force at vmax Length v 1 2.83 83.0 0.08 2.92 7.92 22 316 305 11.58 -156.4 2 316 920 1204 Critical force: 316 920 1204 Shear wall 1-1, Level 1 $\texttt{E}{\operatorname{\mathsf{->}}}\texttt{W}$ and $\texttt{N}{\operatorname{\mathsf{->}}}\texttt{S}$ seismic design, flexible diaphragm vmax = 133.0, V/L = 46.9, Co = 0.660, FHS = 14.42, sum (bi) = 13.37 Seg w/ Seg Other Drag strut force at vmax Length v 1 2.83 68.8 0.08 2.92 7.92 18 1 262 253 2 11.58 -129.6 262 762 997 762 Critical force: 262 997 Shear wall 3-1, Level 1 W->E and S->N seismic design, flexible diaphragm vmax = 85.7, V/L = 46.3, Co = 1.000, FHS = 14.5, sum (bi) = 13.5 Seg w/ Seg Other Drag strut force at vmax Length v 1.00 4.00 8.00 3.0 78.3 -301 11.5 57.1 -301 -368 -182 1 2 -268 -453 Critical force: -301 -268 -453 Shear wall 3-1, Level 1 W->E and S->N wind design, flexible diaphragm vmax = 104.9, V/L = 56.7, Co = 1.000, FHS = 14.5, sum (bi) = 13.5 Seg w/ Seg Other Drag strut force at vmax Length v 1.00 4.00 8.00 3.0 95.8 -368 11.5 70.0 -368 1 -368 -223 -450 -328 2 -555 Critical force: -368 -328 -555 Shear wall 3-1, Level 1 E->W and N->S wind design, flexible diaphragm

vmax = 104.9, V/L = 56.7, Co = 1.000, FHS = 14.5, sum (bi) = 13.5 Seg w/ Seg Other $$\rm Drag\ strut\ force\ at$ Length v 3.0 95.8 1.00 4.00 8.00 vmax 368 450 1 2.2.4 2 11.5 70.0 368 328 555 Critical force: 368 328 555 Shear wall 3-1, Level 1 $\texttt{E}{\operatorname{\mathsf{->}W}}$ and $\texttt{N}{\operatorname{\mathsf{->}S}}$ seismic design, flexible diaphragm vmax = 85.7, V/L = 46.3, Co = 1.000, FHS = 14.5, sum (bi) = 13.5 Seg w/ Seg Other Drag strut force at vmax Length v 1 3.0 78.3 1.00 4.00 8.00 1 301 183 368 2 11.5 57.1 301 268 453 Critical force: 301 2.68 453 Shear wall C-1, Level 1 $\ensuremath{\mathbb{W}}\xspace > \ensuremath{\mathbb{N}}\xspace$ and S->N seismic design, flexible diaphragm vmax = 57.8, V/L = 43.4, Co = 1.000, FHS = 21.5, sum (bi) = 19.9 Other Drag strut force at Seg w/ Seg vmax Length v 3.75 5.75 20.42 23.42 52.6 1 -28 3.75 54 -33 102 2 14.67 44.3 3 -83 127 -3 3.08 52.8 3 3.5 -52 86 -44 54 127 Critical force: -83 -44 Shear wall C-1, Level 1 W->E and S->N wind design, flexible diaphragm vmax = 55.9, V/L = 42.0, Co = 1.000, FHS = 21.5, sum (bi) = 19.9 Seg w/ Seg Other Drag strut force at vmax Length v 3.75 5.75 20.42 23.42 3.75 50.9 -27 1 52 -32 99 2 14.67 42.8 3 -81 123 -3 3 3.08 51.0 34 -50 83 -43 Critical force: 52 -81 123 -43 Shear wall C-1, Level 1 $E \rightarrow W$ and $N \rightarrow S$ wind design, flexible diaphragm vmax = 55.9, V/L = 42.0, Co = 1.000, FHS = 21.5, sum (bi) = 19.9 Other Drag strut force at Seg w/ Seg vmax Length v 3.75 5.75 20.42 23.42 50.9 3.75 32 -98 -52 27 1 2 14.67 42.8 -3 81 -123 3 3 -34 -83 43 3.08 51.0 50 Critical force: -52 81 -123 43 Shear wall C-1, Level 1 $\hbox{\tt E->W}$ and $\hbox{\tt N->S}$ seismic design, flexible diaphragm vmax = 57.8, V/L = 43.4, Co = 1.000, FHS = 21.5, sum (bi) = 19.9 Seg w/ Seg Other Drag strut force at vmax Length v 3.75 5.75 20.42 23.42 1 3.75 52.6 -54 33 -102 28 2 14.67 44.3 -3 83 -127 3 3 3.08 52.8 -35 52 -86 44 Critical force: -54 83 -127 44

Level, Roof: Rafter B1 1 piece(s) 2 x 8 DF No.2 @ 24" OC

Sloped Length: 14' 13/16"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs) 584 @ 2' 1 3/4" 3669 (3.50") Passed (16%) 1.0 D + 1.0 Lr (All Spans) Shear (lbs) 363 @ 2' 10" 1631 Passed (22%) 1.25 1.0 D + 1.0 Lr (All Spans) Moment (Ft-lbs) 955 @ 7' 5 1/8" 1700 Passed (56%) 1.25 1.0 D + 1.0 Lr (Alt Spans) Live Load Defl. (in) 0.153 @ 7' 3 9/16' 0.381 Passed (L/896) 1.0 D + 1.0 Lr (Alt Spans) Total Load Defl. (in) 0.290 @ 7' 3 13/16" 0.572 Passed (L/472) 1.0 D + 1.0 Lr (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2021

Design Methodology : ASD

Member Pitch : 6/12

Member Length : 14' 4 7/16"

PASSED

36

• Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Beveled Plate - DF	3.50"	3.50"	1.50"	285	299	584	Blocking
2 - Beveled Plate - DF	3.50"	3.50"	1.50"	194	208	402	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	10' 7" o/c				
Bottom Edge (Lu)	14' 1" o/c				

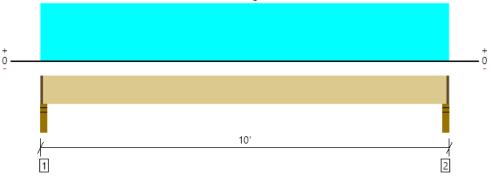
•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(non-snow: 1.25)	Comments
1 - Uniform (PSF)	0 to 12' 7"	24"	17.0	20.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Jeffrey Ford Jackson and Sands (530) 715-7184	
jeffrey@jacksonandsandsengineering.com	



Level, Roof: Joist B2 1 piece(s) 2 x 8 DF No.2 @ 16" OC

Overall Length: 10'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	131 @ 2 1/2"	1434 (2.25")	Passed (9%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	109 @ 10 3/4"	1631	Passed (7%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	306 @ 5'	1700	Passed (18%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.033 @ 5'	0.240	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.066 @ 5'	0.479	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	67	67	133	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.50"	67	67	133	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

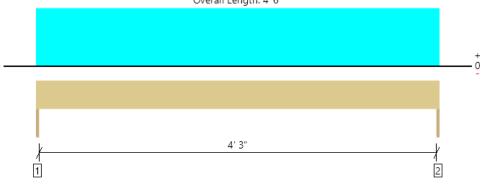
Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	9' 10" o/c				
Bottom Edge (Lu)	9' 10" o/c				
Maximum allowable bracing intervals based on applied load					

Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(non-snow: 1.25)	Comments
1 - Uniform (PSF)	0 to 10'	16"	10.0	10.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Jo
Jeffrey Ford	
Jackson and Sands	
(530) 715-7184	
ieffrev@iacksonandsandsengineering.com	

Level, Int. Header B3 1 piece(s) 4 x 6 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	463 @ 0	3281 (1.50")	Passed (14%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	343 @ 7"	2888	Passed (12%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	521 @ 2' 3"	2151	Passed (24%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.012 @ 2' 3"	0.112	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.024 @ 2' 3"	0.225	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

PASSED

38

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

0

Applicable calculations are based on NDS.

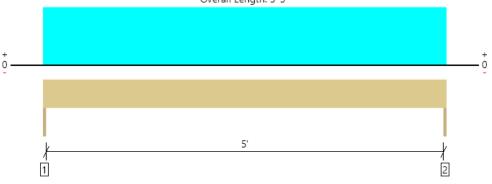
	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Trimmer - SPF	1.50"	1.50"	1.50"	237	226	463	None
2 - Trimmer - SPF	1.50"	1.50"	1.50"	237	226	463	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 6" o/c	
Bottom Edge (Lu)	4' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 4' 6"	N/A	4.9		
1 - Uniform (PLF)	0 to 4' 6"	N/A	50.3	50.3	Linked from: Roof Joist, Support 1
2 - Uniform (PLF)	0 to 4' 6"	N/A	50.3	50.3	Linked from: Roof Joist, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Jeffrey Ford	
Jackson and Sands	1
(530) 715-7184	1
jeffrey@jacksonandsandsengineering.com	1

Level, Typ. Header B4 1 piece(s) 6 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1058 @ 0	5156 (1.50")	Passed (21%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	756 @ 9"	5844	Passed (13%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	1388 @ 2' 7 1/2"	4028	Passed (34%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.014 @ 2' 7 1/2"	0.131	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.027 @ 2' 7 1/2"	0.262	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

PASSED

39

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Trimmer - SPF	1.50"	1.50"	1.50"	533	524	1058	None
2 - Trimmer - SPF	1.50"	1.50"	1.50"	533	524	1058	None

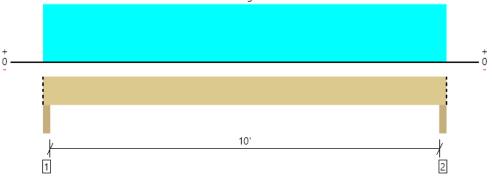
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 3" o/c	
Bottom Edge (Lu)	5' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Roof Live (non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	10.4		
1 - Uniform (PLF)	0 to 5' 3"	N/A	142.5	149.5	Linked from: Roof: Joist B1, Support 1
2 - Uniform (PLF)	0 to 5' 3"	N/A	50.3	50.3	Linked from: Roof Joist, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Jeffrey Ford	
Jackson and Sands	
(530) 715-7184	
jeffrey@jacksonandsandsengineering.com	

Level, Porch: Beam B5 1 piece(s) 6 x 8 DF No.2

Overall Length: 10' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	505 @ 2"	12031 (3.50")	Passed (4%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	418 @ 11"	5844	Passed (7%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	1254 @ 5' 3 1/2"	4028	Passed (31%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.049 @ 5' 3 1/2"	0.256	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.094 @ 5' 3 1/2"	0.512	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

PASSED

40

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Column - SPF	3.50"	3.50"	1.50"	241	265	505	Blocking
2 - Column - SPF	3.50"	3.50"	1.50"	241	265	505	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 7" o/c	
Bottom Edge (Lu)	10' 7" o/c	

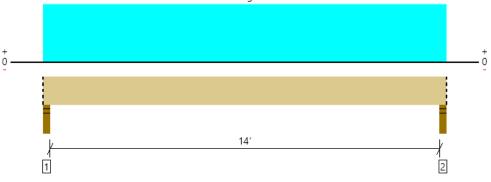
•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 10' 7"	N/A	10.4		
1 - Uniform (PSF)	0 to 10' 7" (Front)	2' 6"	14.0	20.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Jeffrey Ford Jackson and Sands (530) 715-7184	
jeffrey@jacksonandsandsengineering.com	



Level, Roof: Beam B6

3 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3727 @ 2"	7809 (3.50")	Passed (48%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	3072 @ 1' 3 3/8"	14807	Passed (21%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	12975 @ 7' 3 1/2"	33465	Passed (39%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.170 @ 7' 3 1/2"	0.356	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.348 @ 7' 3 1/2"	0.712	Passed (L/492)		1.0 D + 1.0 Lr (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Bearing Length			Loads to Supports (lbs)			
Total	Available	Required	Dead	Roof Live	Factored	Accessories
3.50"	3.50"	1.67"	1904	1823	3727	Blocking
3.50"	3.50"	1.67"	1904	1823	3727	Blocking
	Total 3.50"	Total Available 3.50" 3.50"	Total Available Required 3.50" 3.50" 1.67"	Total Available Required Dead 3.50" 3.50" 1.67" 1904	TotalAvailableRequiredDeadRoof Live3.50"3.50"1.67"19041823	Total Available Required Dead Roof Live Factored 3.50" 3.50" 1.67" 1904 1823 3727

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	14' 7" o/c	
Bottom Edge (Lu)	14' 7" o/c	

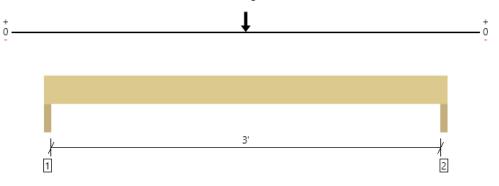
•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Roof Live (non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 14' 7"	N/A	18.2		
1 - Uniform (PLF)	0 to 14' 7" (Front)	N/A	142.5	149.5	Linked from: Roof: Rafter B1, Support 1
2 - Uniform (PLF)	0 to 14' 7" (Front)	N/A	50.3	50.3	Linked from: Roof: Joist B2, Support 1
3 - Uniform (PLF)	0 to 14' 7" (Front)	N/A	50.3	50.3	Linked from: Roof: Joist B2, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Jeffrey Ford Jackson and Sands (530) 715-7184 Jeffrey@jacksonandsandsengineering.com Job Notes

Level, Wall: Header B7 1 piece(s) 4 x 12 DF No.2

Overall Length: 3' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4144 @ 2"	7656 (3.50")	Passed (54%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	4132 @ 1' 2 3/4"	5906	Passed (70%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-Ibs)	6718 @ 1' 9 1/2"	7614	Passed (88%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.008 @ 1' 9 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.015 @ 1' 9 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

PASSED

42

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.89"	2126	2018	4144	None
2 - Trimmer - SPF	3.50"	3.50"	1.89"	2126	2018	4144	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 7" o/c	
Bottom Edge (Lu)	3' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Roof Live (non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 3' 7"	N/A	10.0		
1 - Point (lb)	1' 9 1/2"	N/A	4216	4036	Linked from: Copy of Roof: Beam B8, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Jeffrey Ford	
Jackson and Sands	
(530) 715-7184	
jeffrey@jacksonandsandsengineering.com	

General Footing				Project File: 2		Orland ADU's.ec6
LIC# : KW-06012341, Build:20.23.2.14 DESCRIPTION: F1, Cont. Ftg. Hip	J	ackson & Sa	nds Engineering		(c) ENER	RCALC INC 1983-20
Code References						
Calculations per ACI 318-19, IBC 2021, ASC	CE 7-16					
Load Combinations Used : ASCE 7-16						
eneral Information						
Material Properties			Soil Design Values			
f'c : Concrete 28 day strength =	2.50	ksi	Allowable Soil Bearing		=	1.50 ksf
fy : Rebar Yield =	60.0		Soil Density		=	110.0 pcf
Ec : Concrete Elastic Modulus =	3,122.0	ksi	Increase Bearing By Foo	ina Weight	=	No
Concrete Density =	145.0	pcf	Soil Passive Resistance		=	250.0 pcf
⊕ Values Flexure =	0.90		Soil/Concrete Friction Co		=	0.30
Shear =	0.750					0.00
Analysis Settings	0.100		Increases based on footin			"
Min Steel % Bending Reinf.	=		Footing base depth below		=	ft
Min Allow % Temp Reinf.		.00180	Allow press. increase per when footing base is b		=	ksf
Min. Overturning Safety Factor	= 0	1.0 : 1	when footing base is a	below	=	ft
Min. Sliding Safety Factor			Increases based on footin	a nlan dimanai		
	=	1.0 : 1				
Add Ftg Wt for Soil Pressure	:	Yes	Allowable pressure increa	ase per loot of de	•	linf
Use ftg wt for stability, moments & shears	:	Yes	when max. length or widt	n is areater than	=	ksf
Add Pedestal Wt for Soil Pressure	:	No	when max. length of what	ris greater than	=	ft
Use Pedestal wt for stability, mom & shear	:	No			_	it it
limensions						
Width parallel to X-X Axis =	2.750 ft					
Length parallel to Z-Z Axis =	1.0 ft					
Footing Thickness =	12.0 in					
· coung · montoco				-		
				Z		
Pedestal dimensions		V	1			V
px : parallel to X-X Axis =	in	Х				Х
pz : parallel to Z-Z Axis =	in in					e n
Height =	in					
Rebar Centerline to Edge of Concrete				_ <u>Z</u>		st.
at Bottom of footing =	3.0 in					Dist
	0.0 11			2'-9"		e
			*			Edge
einforcing						Ξ.
Bars parallel to X-X Axis						
Number of Bars =	2.0					
Reinforcing Bar Size = #						
Bars parallel to Z-Z Axis						•
	4.0				E. There	=
	4.0 # 4		2 - # 4 Bars	4	- # 4	Bafs
Number of Bars =					an all and	
Reinforcing Bar Size =				-	Carlo Carlo Carlos	
Reinforcing Bar Size = Bandwidth Distribution Check (ACI 15.4.4.2)	້. ຄ	100000000		- C	and the second second	
Reinforcing Bar Size =		X-X S	ection Looking to +7			
Reinforcing Bar Size = Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation	ئ م	X-X S	ection Looking to +Z	5200 B	on Loo	oking to +X
Reinforcing Bar Size = Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z	ా -Z Axis	X-X S	ection Looking to +Z	5200 B	on Loo	oking to +X
Reinforcing Bar Size = Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation Bars along Z # Bars required within zone	ئ م	X-X S	ection Looking to +Z	5200 B	on Loo	oking to +X

Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	=	1.90	1.819	0.2560	0.0			k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

LIC# : KW-06012341, Build:20.23.2.14

DESCRIPTION: F1, Cont. Ftg. Hip

	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9980	Soil Bearing	1.497 ksf	1.50 ksf	+D+Lr about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.1219	Z Flexure (+X)	1.872 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr+L
PASS	0.1219	Z Flexure (-X)	1.872 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr+L
PASS	0.02184	X Flexure (+Z)	0.2476 k-ft/ft	11.334 k-ft/ft	+1.20D+1.60Lr+L
PASS	0.02184	X Flexure (-Z)	0.2476 k-ft/ft	11.334 k-ft/ft	+1.20D+1.60Lr+L
PASS	0.1547	1-way Shear (+X)	11.599 psi	75.0 psi	+1.20D+1.60Lr+L
PASS	0.1547	1-way Shear (-X)	11.599 psi	75.0 psi	+1.20D+1.60Lr+L
PASS	n/a	1-way Shear (+Z)	0.0 psi	75.0 psi	n/a
PASS	n/a	1-way Shear (-Z)	0.0 psi	75.0 psi	n/a
PASS	0.08822	2-way Punching	13.233 psi	150.0 psi	+1.20D+1.60Lr+L

Jackson & Sands Engineering

Detailed Results

Rotation Axis &		Xeo		Actu	al Soil Bearing	Stress @ Loc	ation	Actual / Allow
	Gross Allowa	ble	(in)	Bottom, -Z		Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n	/a 0.0	0.8359	0.8359	n/a	n/a	0.557
X-X, +D+L	1.50	n	/a 0.0	0.9290	0.9290	n/a	n/a	0.619
X-X, +D+Lr	1.50	n	/a 0.0	1.497	1.497	n/a	n/a	0.998
X-X, +D+0.750Lr+0.750L	1.50	n	/a 0.0	1.402	1.402	n/a	n/a	0.935
X-X, +D+0.750L	1.50	n	/a 0.0	0.9057	0.9057	n/a	n/a	0.604
X-X, +0.60D	1.50	n	/a 0.0	0.5015	0.5015	n/a	n/a	0.334
Z-Z, D Only	1.50	0	0.0 n/a	n/a	n/a	0.8359	0.8359	0.557
Z-Z, +D+L	1.50	0	0.0 n/a	n/a	n/a	0.9290	0.9290	0.619
Z-Z, +D+Lr	1.50	0	0.0 n/a	n/a	n/a	1.497	1.497	0.998
Z-Z, +D+0.750Lr+0.750L	1.50	0	.0 n/a	n/a	n/a	1.402	1.402	0.935
Z-Z, +D+0.750L	1.50	0	.0 n/a	n/a	n/a	0.9057	0.9057	0.604
Z-Z, +0.60D	1.50		0.0 n/a			0.5015	0.5015	0.334
Verturning Stability								
Rotation Axis &		•			-			0 4 4
Load Combination		Overtur	ning Mome	nt	Resisting Mon	nent Stat	oility Ratio	Status
Footing Has NO Overturning								
liding Stability							A	ll units k
Force Application Axis								
Load Combination		Slid	ing Force		Resisting Fo	rce Stat	oility Ratio	Status
Load Combination Footing Has NO Sliding		Slid	ing Force		Resisting Fo	rce Stat	oility Ratio	Status
		Slidi	ing Force		Resisting Fo	rce Stat	bility Ratio	Status
Footing Has NO Sliding	Mu		Tension	As Req'd	Gvrn. As	Actual As	Phi*Mn	Status Status
Footing Has NO Sliding ooting Flexure	n Mu k-ft			As Req'd in^2				
Footing Has NO Sliding ooting Flexure		Side	Tension		Gvrn. As	Actual As	Phi*Mn	
Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combination	k-ft	Side +Z	Tension Surface	in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
Footing Has NO Sliding cooting Flexure Flexure Axis & Load Combination X-X, +1.40D	k-ft 0.1209	Side +Z -Z	Tension Surface Bottom	in^2 0.2592	Gvrn. As in^2 AsMin	Actual As in^2 0.2909	Phi*Mn k-ft 11.334	Status OK
Footing Has NO Sliding Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D	k-ft 0.1209 0.1209	Side +Z -Z +Z	Tension Surface Bottom Bottom	in^2 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin	Actual As in^2 0.2909 0.2909	Phi*Mn k-ft 11.334 11.334	Status OK OK
Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L	k-ft 0.1209 0.1209 0.1636	Side +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom	in^2 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin	Actual As in^2 0.2909 0.2909 0.2909	Phi*Mn k-ft 11.334 11.334 11.334	Status OK OK OK
Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L	k-ft 0.1209 0.1209 0.1636 0.1636 0.1223	Side +Z -Z +Z -Z +Z	Tension Surface Bottom Bottom Bottom Bottom	in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin	Actual As in^2 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909	Phi*Mn k-ft 11.334 11.334 11.334 11.334 11.334	Status OK OK OK OK
Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L	k-ft 0.1209 0.1209 0.1636 0.1636 0.1223 0.1223	Side +Z -Z +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom	in ² 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909	Phi*Mn k-ft 11.334 11.334 11.334 11.334 11.334 11.334	Status OK OK OK OK OK
Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60Lr+L	k-ft 0.1209 0.1209 0.1636 0.1636 0.1223	Side +Z -Z +Z -Z +Z -Z +Z	Tension Surface Bottom Bottom Bottom Bottom Bottom	in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909	Phi*Mn k-ft 11.334 11.334 11.334 11.334 11.334 11.334 11.334	Status OK OK OK OK OK
Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60Lr+L X-X, +1.20D+1.60Lr+L	k-ft 0.1209 0.1209 0.1636 0.1636 0.1223 0.1223 0.2476 0.2476	Side +Z -Z +Z -Z +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909	Phi*Mn k-ft 11.334 11.334 11.334 11.334 11.334 11.334 11.334 11.334	Status OK OK OK OK OK OK
Footing Has NO Sliding ooting Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60Lr+L X-X, +1.20D+1.60Lr+L X-X, +1.20D+1.60Lr	k-ft 0.1209 0.1209 0.1636 0.1636 0.1223 0.1223 0.2476 0.2476 0.2359	Side +Z -Z +Z -Z +Z -Z +Z -Z +Z +Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909	Phi*Mn k-ft 11.334 11.334 11.334 11.334 11.334 11.334 11.334 11.334 11.334	Status OK OK OK OK OK OK OK
Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60Lr+L X-X, +1.20D+1.60Lr X-X, +1.20D+1.60Lr X-X, +1.20D+1.60Lr	k-ft 0.1209 0.1209 0.1636 0.1636 0.1223 0.1223 0.2476 0.2476 0.2476 0.2359 0.2359	Side +Z -Z +Z -Z +Z -Z +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909	Phi*Mn k-ft 11.334 11.334 11.334 11.334 11.334 11.334 11.334 11.334 11.334 11.334	Status OK OK OK OK OK OK OK OK
Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combination X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+0.50Lr+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60L X-X, +1.20D+1.60Lr+L X-X, +1.20D+1.60Lr+L X-X, +1.20D+1.60Lr	k-ft 0.1209 0.1209 0.1636 0.1636 0.1223 0.1223 0.2476 0.2476 0.2359	Side +Z -Z +Z -Z +Z -Z +Z -Z +Z -Z +Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909 0.2909	Phi*Mn k-ft 11.334 11.334 11.334 11.334 11.334 11.334 11.334 11.334 11.334	Status OK OK OK OK OK OK OK

Project File: 23M-007 Orland ADU's.ec6

(c) ENERCALC INC 1983-2022

(c) ENERCALC INC 1983-2022

Project File: 23M-007 Orland ADU's.ec6

General Footing

LIC# : KW-06012341, Build:20.23.2.14

DESCRIPTION: F1, Cont. Ftg. Hip

Footing Flexure

Flexure Axis & Load Combination	n Mu k-ft	Side	Tension Surface		Gvrn. As in^2	Actual in^2	As Phi* k-		Status
X-X, +1.20D	0.1036	-Z	Bottom	0.2592	AsMin	0.2909	9 1 [,]	1.334	ок
X-X, +1.20D+0.50Lr+L	0.1566	+Z	Bottom	0.2592	AsMin	0.2909	9 1'	1.334	OK
X-X, +1.20D+0.50Lr+L	0.1566	-Z		0.2592	AsMin	0.2909		1.334	ΟΚ
X-X, +0.90D	0.07773	+Z	Bottom	0.2592	AsMin	0.2909	9 1'	1.334	OK
X-X, +0.90D	0.07773	-Z		0.2592	AsMin	0.2909	9 1'	1.334	OK
Z-Z, +1.40D	0.9144	-X		0.2592	AsMin	0.40		5.353	OK
Z-Z, +1.40D	0.9144	+X	Bottom	0.2592	AsMin	0.40	D 15	5.353	OK
Z-Z, +1.20D+0.50Lr+1.60L	1.237	-X	Bottom	0.2592	AsMin	0.40	D 15	5.353	OK
Z-Z, +1.20D+0.50Lr+1.60L	1.237	+X		0.2592	AsMin	0.40		5.353	OK
Z-Z, +1.20D+1.60L	0.9246	-X	Bottom	0.2592	AsMin	0.40	D 15	5.353	OK
Z-Z, +1.20D+1.60L	0.9246	+X	Bottom	0.2592	AsMin	0.40		5.353	ΟΚ
Z-Z, +1.20D+1.60Lr+L	1.872	-X	Bottom	0.2592	AsMin	0.40		5.353	ΟΚ
Z-Z, +1.20D+1.60Lr+L	1.872	+X		0.2592	AsMin	0.40	D 1:	5.353	OK
Z-Z, +1.20D+1.60Lr	1.784	-X		0.2592	AsMin	0.40		5.353	OK
Z-Z, +1.20D+1.60Lr	1.784	+X		0.2592	AsMin	0.40		5.353	OK
Z-Z, +1.20D+L	0.8718	-X		0.2592	AsMin	0.40		5.353	OK
Z-Z, +1.20D+L	0.8718	+X		0.2592	AsMin	0.40		5.353	OK
Z-Z, +1.20D	0.7838	-X		0.2592	AsMin	0.40		5.353	OK
Z-Z, +1.20D	0.7838	+X		0.2592	AsMin	0.40		5.353	OK
Z-Z, +1.20D+0.50Lr+L	1.184	-X		0.2592	AsMin	0.40		5.353	OK
Z-Z, +1.20D+0.50Lr+L	1.184	+X		0.2592	AsMin	0.40		5.353	OK
Z-Z, +0.90D	0.5878	-X		0.2592	AsMin	0.40		5.353	OK
Z-Z, +0.90D	0.5878	+X		0.2592	AsMin	0.40		5.353	OK
One Way Shear						-			
Load Combination	Vu @ -X	Vu @		@ -Z Vu		/u:Max	Phi Vn Vi	u / Phi*Vn	Status
+1.40D	5.67 p	si	5.67 psi	0.00 psi	0.00 psi	5.67 psi	75.00 psi	0.08	OK
+1.20D+0.50Lr+1.60L	7.67 p	si	7.67 psi	0.00 psi	0.00 psi	7.67 psi	75.00 psi	0.10	OK
+1.20D+1.60L	5.73 p	si	5.73 psi	0.00 psi	0.00 psi	5.73 psi	75.00 psi	0.08	OK
+1.20D+1.60Lr+L	11.60 p	si	11.60 psi	0.00 psi	0.00 psi	11.60 psi	75.00 psi	0.15	OK
+1.20D+1.60Lr	11.05 p		11.05 psi	0.00 psi	0.00 psi	11.05 psi	75.00 psi	0.15	OK
+1.20D+L	5.40 p		5.40 psi	0.00 psi	0.00 psi	5.40 psi	75.00 psi	0.07	OK
+1.20D	4.86 p		4.86 psi	0.00 psi	0.00 psi	4.86 psi	75.00 psi	0.06	OK
+1.20D+0.50Lr+L	7.34 p		7.34 psi	0.00 psi	0.00 psi	7.34 psi	75.00 psi	0.10	OK
+0.90D	3.64 p		3.64 psi	0.00 psi	0.00 psi	3.64 psi	75.00 psi	0.05	OK
Two-Way "Punching" Shear	3.04 P	51	5.04 psi	0.00 psi	0.00 psi	5.04 psi	75.00 psi	All units	
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		64	16 psi	150.00	Insi	0.04309			ОК
+1.20D+0.50Lr+1.60L			74 psi	150.00		0.0583			OK
+1.20D+1.60L			54 psi	150.00		0.04357			OK
+1.20D+1.60Lr+L			23 psi	150.00		0.08822			ок
+1.20D+1.60Lr			51 psi	150.00		0.08407			ок
+1.20D+L			16 psi	150.00		0.04108			ок
+1.20D			54 psi	150.00		0.03693			OK
+1.20D+0.50Lr+L			37 psi	150.00		0.05581			ок
+0.90D			16 psi	150.00		0.0277			OK
		- r .	0 P01	100.00	.poi	0.0211			0.0

Jackson & Sands Engineering

Jackson & Sands Engineering

General Footing

LIC# : KW-06012341, Build:20.23.2.14

DESCRIPTION: F2, Porch Ftg.

Code References

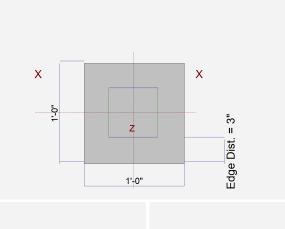
Calculations per ACI 318-19, IBC 2021, ASCE 7-16 Load Combinations Used : ASCE 7-16

General Information

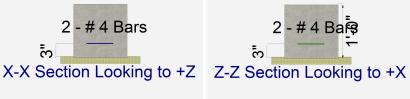
Material Properties f'c : Concrete 28 day strength fy : Rebar Yield Ec : Concrete Elastic Modulus Concrete Density	= = =	60 3,122	50 ksi 0.0 ksi 0.0 ksi 5.0 pcf
	_	0.9	
φ values Flexure Shear	=	0.75	
Analysis Settings			
Min Steel % Bending Reinf.		=	
Min Allow % Temp Reinf.		=	0.00180
Min. Overturning Safety Factor		=	1.0 : 1
Min. Sliding Safety Factor		=	1.0:1
Add Ftg Wt for Soil Pressure		:	Yes
Use ftg wt for stability, moments & sh	nears	:	Yes
Add Pedestal Wt for Soil Pressure		:	No
Use Pedestal wt for stability, mom &	shear	:	No

	Soil Design Values Allowable Soil Bearing	_	1.50 ksf	
	Soil Density	=	110.0 pcf	
	Increase Bearing By Footing Weight	=	No	
	Soil Passive Resistance (for Sliding)	=	250.0 pcf	
	Soil/Concrete Friction Coeff.	=	0.30	
	Increases based on footing Depth			
	Footing base depth below soil surface	=	ft	
	Allow press. increase per foot of depth	=	ksf	
1	when footing base is below	=	ft	
1	Increases based on footing plan dimension	on		
	Allowable pressure increase per foot of de	epth		
	when max. length or width is greater than	=	ksf	
		=	ft	

Dimensions


Width parallel to X-X Axis	=	1.0 ft
Length parallel to Z-Z Axis	=	1.0 ft
Footing Thickness	=	12.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis	=	in
Height	=	in
Rebar Centerline to Edge of (Concrete	
at Bottom of footing	=	3.0 in


Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	#	2.0 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution Ch Direction Requiring Closer	•	# 5.4.4.2)	2.0 4
# Bars required within zone # Bars required on each sid			n/a n/a n/a

Bars required on each side of zone

Ζ

Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	= _	0.2110	0.2650		0.0			k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

(c) ENERCALC INC 1983-2022

LIC# : KW-06012341, Build:20.23.2.14

DESCRIPTION: F2, Porch Ftg.

DESIGN SUMMARY

SIGN SU	IMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.4140	Soil Bearing	0.6210 ksf	1.50 ksf	+D+Lr about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.005514	Z Flexure (+X)	0.08465 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	0.005514	Z Flexure (-X)	0.08465 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	0.005514	X Flexure (+Z)	0.08465 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	0.005514	X Flexure (-Z)	0.08465 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	n/a	1-way Shear (+X)	0.0 psi	75.0 psi	n/a
PASS	0.0	1-way Shear (-X)	0.0 psi	0.0 psi	n/a
PASS	n/a	1-way Shear (+Z)	0.0 psi	75.0 psi	n/a
PASS	n/a	1-way Shear (-Z)	0.0 psi	75.0 psi	n/a
PASS	n/a	2-way Punching	0.8829 psi	75.0 psi	+1.20D+1.60Lr

Jackson & Sands Engineering

Detailed Results

Soil Bearing Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	Stress @ I oc	ation	Actual / Allow
Load Combination	Gross Allowable	(in		Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.0	0.3560	0.3560	n/a	n/a	0.237
X-X, +D+Lr	1.50	n/a	0.0	0.6210	0.6210	n/a	n/a	0.414
X-X, +D+0.750Lr	1.50	n/a	0.0	0.5548	0.5548	n/a	n/a	0.370
X-X, +0.60D	1.50	n/a	0.0	0.2136	0.2136	n/a	n/a	0.142
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.3560	0.3560	0.237
Z-Z, +D+Lr	1.50	0.0	n/a	n/a	n/a	0.6210	0.6210	0.414
Z-Z, +D+0.750Lr	1.50	0.0	n/a	n/a	n/a	0.5548	0.5548	0.370
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.2136	0.2136	0.142

Overturning Stability

	M.,	Side	Tonsion	Ac Boald	Curn Ac		o Dhi*M	
Footing Flexure								
Footing Has NO Sliding								
Force Application Axis Load Combination		SI	iding Force		Resisting Forc	e	Stability Ratio	Status
Sliding Stability								All units k
Footing Has NO Overturning								
Rotation Axis & Load Combination		Overt	urning Mome	nt	Resisting Mome	ent	Stability Ratio	Status

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.03693	+Z	Bottom	0.2592	AsMin	0.40	15.353	ок
X-X, +1.40D	0.03693	-Z	Bottom	0.2592	AsMin	0.40	15.353	ОК
X-X, +1.20D+0.50Lr	0.04821	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+0.50Lr	0.04821	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D	0.03165	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D	0.03165	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+1.60Lr	0.08465	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+1.60Lr	0.08465	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +0.90D	0.02374	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +0.90D	0.02374	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.40D	0.03693	-X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.40D	0.03693	+X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D+0.50Lr	0.04821	-X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D+0.50Lr	0.04821	+X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D	0.03165	-X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D	0.03165	+X	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.20D+1.60Lr	0.08465	-X	Bottom	0.2592	AsMin	0.40	15.353	OK

(c) ENERCALC INC 1983-2022

LIC# : KW-06012341, Build:20.23.2.14

DESCRIPTION: F2, Porch Ftg.

Footing Flexure

Flexure Axis & Load Combinati	on Mu k-ft	Side	Tens Surfa		Req'd n^2		rn. A s n^2	s Actual in^2		Phi*Mn k-ft	Status
Z-Z, +1.20D+1.60Lr	0.08465	5 +X	Botto	m 0	.2592	As	Min	0.4	40	15.353	ок
Z-Z, +0.90D	0.02374	↓ -X	Botto	m 0.	.2592	As	Min	0.4	40	15.353	OK
Z-Z, +0.90D	0.02374	↓ +X	Botto	m 0.	.2592	As	Min	0.4	40	15.353	OK
One Way Shear											
Load Combination	Vu @ -X	Vu @	₽ +X	Vu @ -Z	٧u	@ +Z	,	Vu:Max	Phi Vn	Vu / Phi*V	n Status
+1.40D	0.00) psi	0.00 ps	i 0.0	0 psi	0.0)0 psi	0.00 psi	i 75.00	psi 0.	00 OK
+1.20D+0.50Lr	0.00) psi	0.00 ps	i 0.0	0 psi	0.0)0 psi	0.00 psi	i 75.00	psi 0.	00 OK
+1.20D	0.00) psi	0.00 ps	i 0.0	0 psi	0.0)0 psi	0.00 psi	i 75.00	psi 0.	00 OK
+1.20D+1.60Lr	0.00) psi	0.00 ps	i 0.0	0 psi	0.0	0 psi	0.00 psi	i 75.00	psi 0.	00 OK
+0.90D	0.00) psi	0.00 ps	i 0.0	0 psi	0.0	0 psi	0.00 psi	i 75.00	psi 0.	00 OK
Two-Way "Punching" Shear										. All u	nits k
Load Combination		Vu		F	Phi*Vn			Vu / Phi*Vı	n		Status
+1.40D		0.	39 psi		150.00	psi		0.002567			OK
+1.20D+0.50Lr		0.	50 psi		150.00	psi		0.003352			OK
+1.20D		0.	33 psi		150.00	psi		0.002201			OK
+1.20D+1.60Lr		0.	88 psi		150.00	psi		0.005886			OK
+0.90D		0.	25 psi		150.00	psi		0.00165			OK

Jackson & Sands Engineering

(c) ENERCALC INC 1983-2022

Jackson & Sands Engineering

General Footing

LIC# : KW-06012341, Build:20.23.2.14 **DESCRIPTION:** F3, Int. Pier

Code References

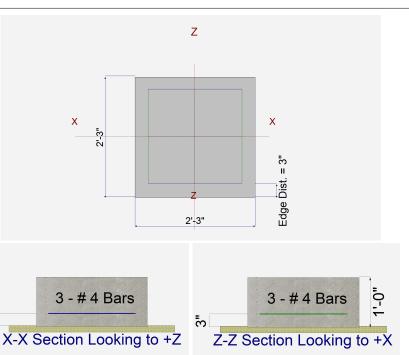
Calculations per ACI 318-19, IBC 2021, ASCE 7-16 Load Combinations Used : ASCE 7-16

General Information

Material Properties			
f'c : Concrete 28 day strength	=	2.	.50 ksi
fy : Rebar Yield	=	6	0.0 ksi
Ec : Concrete Elastic Modulus	=	3,122	2.0 ksi
Concrete Density	=	14	5.0 pcf
$_{m 0}$ Values Flexure	=	0.	.90
Shear	=	0.7	50
Analysis Settings			
Min Steel % Bending Reinf.		=	
Min Allow % Temp Reinf.		=	0.00180
Min. Overturning Safety Factor		=	1.0:1
Min. Sliding Safety Factor		=	1.0:1
Add Ftg Wt for Soil Pressure		:	Yes
Use ftg wt for stability, moments & s	hears	:	Yes
Add Pedestal Wt for Soil Pressure		:	No
Use Pedestal wt for stability, mom 8	shear	:	No

	Soil Design Values		
	Allowable Soil Bearing	=	1.50 ksf
	Soil Density	=	110.0 pcf
	Increase Bearing By Footing Weight	=	No
	Soil Passive Resistance (for Sliding)	=	250.0 pcf
	Soil/Concrete Friction Coeff.	=	0.30
	Increases based on footing Depth		
	Footing base depth below soil surface	=	ft
	Allow press. increase per foot of depth	=	ksf
	when footing base is below	=	ft
: 1			
: 1	Increases based on footing plan dimension	า	
	Allowable pressure increase per foot of dep	th	
		=	ksf
	when max. length or width is greater than		
		=	ft

Dimensions


Width parallel to X-X Axis	=	2.250 ft
Length parallel to Z-Z Axis	=	2.250 ft
Footing Thickness	=	12.0 in

Pedestal dimensions px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis Height	=	in in
Rebar Centerline to Edge of at Bottom of footing	Concrete =	3.0 in

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	#	3.0 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution C Direction Requiring Closer		# 5.4.4.2)	3.0 4
# Bars required within zon # Bars required on each si	e		n/a n/a n/a

Bars required on each side of zone

Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	=	3.0	3.0		0.0			k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

3

(c) ENERCALC INC 1983-2022

LIC# : KW-06012341, Build:20.23.2.14 **DESCRIPTION:** F3, Int. Pier

DESIGN SUMMARY

SIGN SU	IMMARY				Design OK
	Min. Ratio	ltem	Applied	Capacity	Governing Load Combination
PASS	0.8867	Soil Bearing	1.330 ksf	1.50 ksf	+D+Lr about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.1007	Z Flexure (+X)	1.050 k-ft/ft	10.424 k-ft/ft	+1.20D+1.60Lr
PASS	0.1007	Z Flexure (-X)	1.050 k-ft/ft	10.424 k-ft/ft	+1.20D+1.60Lr
PASS	0.1007	X Flexure (+Z)	1.050 k-ft/ft	10.424 k-ft/ft	+1.20D+1.60Lr
PASS	0.1007	X Flexure (-Z)	1.050 k-ft/ft	10.424 k-ft/ft	+1.20D+1.60Lr
PASS	0.07835	1-way Shear (+X)	5.877 psi	75.0 psi	+1.20D+1.60Lr
PASS	0.07835	1-way Shear (-X)	5.877 psi	75.0 psi	+1.20D+1.60Lr
PASS	0.07835	1-way Shear (+Z)	5.877 psi	75.0 psi	+1.20D+1.60Lr
PASS	0.07835	1-way Shear (-Z)	5.877 psi	75.0 psi	+1.20D+1.60Lr
PASS	0.1529	2-way Punching	22.929 psi	150.0 psi	+1.20D+1.60Lr

Jackson & Sands Engineering

Detailed Results

Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	Stress @ Loc	ation	Actual / Allow
Load Combination	Gross Allowable	(in	ı)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.0	0.7376	0.7376	n/a	n/a	0.492
X-X, +D+Lr	1.50	n/a	0.0	1.330	1.330	n/a	n/a	0.887
X-X, +D+0.750Lr	1.50	n/a	0.0	1.182	1.182	n/a	n/a	0.788
X-X, +0.60D	1.50	n/a	0.0	0.4426	0.4426	n/a	n/a	0.295
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.7376	0.7376	0.492
Z-Z, +D+Lr	1.50	0.0	n/a	n/a	n/a	1.330	1.330	0.887
Z-Z, +D+0.750Lr	1.50	0.0	n/a	n/a	n/a	1.182	1.182	0.788
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.4426	0.4426	0.295

Overturning Stability

Rotation Axis & Load Combination		Over	urning Mome	ent	Resisting Mo	oment	Stability Ratio	Status
Footing Has NO Overturning								
Sliding Stability								All units k
Force Application Axis Load Combination		S	liding Force		Resisting F	orce	Stability Ratio	Status
Footing Has NO Sliding								
Footing Flexure								
Flexure Axis & Load Combination	Mu	Side	Tension	As Req'd	Gvrn. As	Actual A	s Phi*Mi	n Statu

Flexure Axis & Load Combination	MU k-ft	Side	l ension Surface	in^2	Gvrn. As in^2	in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.5250	+Z	Bottom	0.2592	AsMin	0.2667	10.424	ок
X-X, +1.40D	0.5250	-Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +1.20D+0.50Lr	0.6375	+Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +1.20D+0.50Lr	0.6375	-Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +1.20D	0.450	+Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +1.20D	0.450	-Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +1.20D+1.60Lr	1.050	+Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +1.20D+1.60Lr	1.050	-Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +0.90D	0.3375	+Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +0.90D	0.3375	-Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
Z-Z, +1.40D	0.5250	-X	Bottom	0.2592	AsMin	0.2667	10.424	OK
Z-Z, +1.40D	0.5250	+X	Bottom	0.2592	AsMin	0.2667	10.424	OK
Z-Z, +1.20D+0.50Lr	0.6375	-X	Bottom	0.2592	AsMin	0.2667	10.424	OK
Z-Z, +1.20D+0.50Lr	0.6375	+X	Bottom	0.2592	AsMin	0.2667	10.424	OK
Z-Z, +1.20D	0.450	-X	Bottom	0.2592	AsMin	0.2667	10.424	OK
Z-Z, +1.20D	0.450	+X	Bottom	0.2592	AsMin	0.2667	10.424	OK
Z-Z, +1.20D+1.60Lr	1.050	-X	Bottom	0.2592	AsMin	0.2667	10.424	OK

(c) ENERCALC INC 1983-2022

LIC# : KW-06012341, Build:20.23.2.14

Jackson & Sands Engineering

Project File: 23M-007 Orland ADU's.ec6

(c) ENERCALC INC 1983-2022

DESCRIPTION: F3, Int. Pier

Footing Flexure

Flexure Axis & Load Combination	n <mark>Mu</mark> k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	s Actual in^2		n i*Mn k-ft	Status
Z-Z, +1.20D+1.60Lr	1.050	+X	Bottom	0.2592	AsMin	0.2667	7	10.424	ок
Z-Z, +0.90D	0.3375	-X	Bottom	0.2592	AsMin	0.2667	7	10.424	OK
Z-Z, +0.90D	0.3375	+X	Bottom	0.2592	AsMin	0.2667	7	10.424	OK
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X Vu	@-Z Vu @	⊉+Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	2.94 p	si	2.94 psi	2.94 psi	2.94 psi	2.94 psi	75.00 p	si 0.04	OK
+1.20D+0.50Lr	3.57 p	si	3.57 psi	3.57 psi	3.57 psi	3.57 psi	75.00 p	si 0.05	OK
+1.20D	2.52 p	si	2.52 psi	2.52 psi	2.52 psi	2.52 psi	75.00 p	si 0.03	OK
+1.20D+1.60Lr	5.88 p	si	5.88 psi	5.88 psi	5.88 psi	5.88 psi	75.00 p	si 0.08	OK
+0.90D	1.89 p	si	1.89 psi	1.89 psi	1.89 psi	1.89 psi	75.00 p	si 0.03	OK
Two-Way "Punching" Shear			•	·	·		·	All units	s k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		11.4	6 psi	150.00p	si	0.07643			OK
+1.20D+0.50Lr		13.9	2 psi	150.00 p	si	0.09281			OK
+1.20D		9.8	3 psi	150.00p	si	0.06551			OK
+1.20D+1.60Lr		22.9	3 psi	150.00p	si	0.1529			OK
+0.90D		7.3	7 psi	150.00 p	si	0.04913			OK