

STRUCTURAL ANALYSIS

For:
City of Orland ADU's Mirr.
Orland, CA
450 SQFT
Project # 23M-007

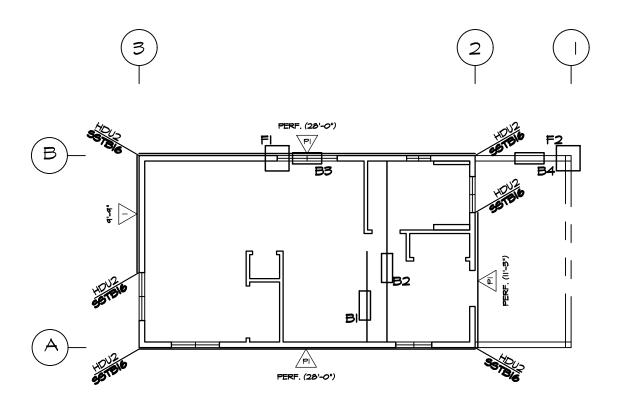
September 22, 2023

(PC1 SUBMITTAL)

JACKSON & SANDS ENGINEERING, Inc. 1250 East Ave. #10 Chico, CA 95926 info@jacksonandsandsengineering.com

TABLE OF CONTENTS:

SCOPE OF WORK:	1
PROJECT LAYOUT:	2
DESIGN LOADS / CRITERIA:	3-4
LATERAL DESIGN:	5-37
BEAM DESIGN:	38-41
FOOTING DESIGN:	42-47


SCOPE OF WORK

Scope

The following Structural Analysis is for a new light-wood framed single family residence to be built on a new slab-on-grade floor. Analysis of structure was performed with respect to the forces of seismic and wind and gravity using the applicable chapters of the A.S.C.E. 7-16. The structural design of this project used two methods for lateral restraint system: Perforated shear wall design (SDPWS 2021 sec. 4.3.5.3) and segmented shear wall design (SDPWS 2021 sec. 4.3.5.1). Analysis and design for gravity loads were performed to verify beam design per AWC NDS 2021 for wood members.

Analysis

The building was analyzed as 1 diaphragm and idealized as flexible for a simplified analysis. The footings and beams were designed with appropriate design loads using the Enercalc and Forte web software.

PROJECT LAYOUT

N/A

450 SQFT. ADU, MIRROR 123 MY WAY ORLAND, CA

Design Loads / Criteria

Gravity Loads:	Per ASCE 7-16		SEISMIC	
Roof Dead Loads:	Comp Roofing	5 psf	ASCE 7-16	
	1/2" Roof ply	1.8 psf	EQUIVALENT LATERA	<u>L</u>
Slope= 6 /12	Framing	1.5 psf	FORCE PROCEEDURE	
27 Degrees	Insulation	1 psf	Design Category:	D (default)
	1/2" covering	2.8 psf	l =	II
	Solar	3 psf	Ss =	0.842
	Misc	1 psf	S1 =	0.355
	Total =	16.1 psf	SMS =	1.01
	Total Sloped=	19.00 psf	SM1 =	null
			SDS =	0.673
Roof Live Loads	Construction=	20 psf	SD1 =	null
	Ground Snow=	0 psf	TL =	16
	Flat Roof Snow=	0 psf	R0 =	1.3
	Sloped Roof Snow=	0.0 psf	R =	6.5
			SNOW LOA	
Exterior Wall Dead Load	Wood	2.00 psf	Sloped Roof	
	3/8" ply	2.40 psf		0 PSF
	2x6 Framing	1.70 psf	WIND	
	1/2" sheetrock	2.20 psf	MAIN WIND FORCE R	ESISTING SYSTEM,
	Insulation	1.10 psf	ALL HEIGHTS METHO	D ASCE 7-16
	Misc	1.00 psf	CHAPTERS 26 & 27	
	Wall total=	11.00 psf	WIND SPEED =	95 MPH
			EXPOSURE =	С
Interior wall dead load	2x Framing	1.7 psf	ENCLOSURE =	ENCLOSED
	1/2" sheetrock	4.4 psf		
	Misc	1 psf		
	Wall total=	8 psf		
]	

Orland, CA 95963, USA

Latitude, Longitude: 39.7473803, -122.1963748

Туре	Value	Description
S _S	0.842	MCE _R ground motion. (for 0.2 second period)
S ₁	0.355	MCE _R ground motion. (for 1.0s period)
S _{MS}	1.01	Site-modified spectral acceleration value
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value
S _{DS}	0.673	Numeric seismic design value at 0.2 second SA
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA

Туре	Value	Description
SDC	null -See Section 11.4.8	Seismic design category
F_a	1.2	Site amplification factor at 0.2 second
F_{v}	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.373	MCE _G peak ground acceleration
F_{PGA}	1.227	Site amplification factor at PGA
PGA _M	0.457	Site modified peak ground acceleration
T_L	16	Long-period transition period in seconds
SsRT	0.842	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	0.928	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	1.5	Factored deterministic acceleration value. (0.2 second)
S1RT	0.355	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.397	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	0.6	Factored deterministic acceleration value. (1.0 second)
PGAd	0.5	Factored deterministic acceleration value. (Peak Ground Acceleration)
PGA _{UH}	0.373	Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration
C_{RS}	0.907	Mapped value of the risk coefficient at short periods
		Job #23M-007 450

Job #23M-007 450

SOFTWARE FOR WOOD DESIGN

WoodWorks® Shearwalls 2023

23M-007 450 adu.wsw Apr. 6, 2023 17:33:30

Project Information

DESIGN SETTINGS

	sign Code 'AWC SDPWS 2021		Wind Standard	ahts)	Seismic Standard ASCE 7-16
100 2021/		mbinations	Treetional (IIII ner		e Capacity Modification
For Design (ASD)	For Deflection (Str	ength)	Wind	Seismic
0.70 Seismic	+ 0.60 Dead	1.00 Seismic +		1.00	1.00
0.60 Wind	+ 0.60 Dead	1.00 Wind +	0.90 Dead		
	Service Condition	s and Load Duration	1	Max Sh	earwall Offset [ft]
Duration	Temperature	Moist	ure Content	Plan	Elevation
Factor	Range	Fabrication	Service	(within story)	(between stories)
1.60	T<=100F	24% (>19%)	10% (<=19%)	0.50	-
		Maximui	n Height-to-width Ratio	•	
Wood	d panels	Fiberboard	Lumber		Gypsum
Blocked	Unblocked		Wind Se	eismic Block	ked Unblocked
3.5	2.0	-	-		-
	Ignore shear resista	ance contribution of	•••	Forc	es based on
Wa	II segments	S	eismic	Hold-downs	Applied loads
Side with in	valid aspect ratio	Any gypsum, l	umber, fiberboard	Drag struts	Applied loads
	She	arwall relative rigidit	y: Wall capacity	•	
Non-identica	al materials and constru	ction on the shearlin	e: Not allowed		
		Deflection Equation	n: 4-term from SDPW	S C4.3.4-1	
	Drift	limit for wind desig	n: 1 / 100 story he	ight	
		FTAO stra	p: Continuous at to	p of highest openi	ing and bottom of lowest

SITE INFORMATION

SITE INFORMATION	Wind			Seismic	
ASCE 7-16 Dire	ctional (All he	eights)	ASCE 7-16 12.8	Equivalent Lateral Force	e Procedure
Design Wind Speed	95 mph		Risk Category	Category II - All othe	ers
Serviceability Wind Speed	100 mph		Structure Type	Regular	
Exposure	Exposure C		Building System	Bearing Wall	
Enclosure	Partially o	pen	Design Category	D	
Min Wind Loads: Walls	16 psf		Site Class	D	
Roofs	8 psf		Spe	ctral Response Acceleration	
Topograp	hic Information [ft]		S1 : 0.350g	Ss: 0.8	40g
Shape	Height	Length	Fundamental Period	E-W	N-S
-	_	_	T Used	0.123s	0.123s
Site Location: -			Approximate Ta	0.123s	0.123s
E.	lev: Oft		Maximum T	0.173s	0.173s
Rigid buildi:	ng - Static ana	lysis	Response Factor R	6.50	6.50
Case 2	E-W loads	N-S loads	Fa: 1.16	Fv: 1.9	5
Eccentricity (%)	15	15			
Loaded at	75%				

23M-007 450 adu.wsw

Apr. 6, 2023 17:33:30

Structural Data

STORY INFORMATION

				Hold-dow	/n
	Story Elev [ft]	Floor/Ceiling Depth [in]	Wall Height [ft]	Length subject to shrinkage [in]	Bolt length [in]
Ceiling	9.00	0.0			
Level 1	0.00	0.0	9.00	0.5	5.25
Foundation	0.00				

BLOCK and ROOF INFORMATION

	Block			Roo	f Panels	
	Dimensions [ft]		Face	Type	Slope	Overhang [ft]
Block 1	1 Story	E-W Ridge				
Location X,Y =	8.00	0.00	North	Side	30.0	1.50
Extent X,Y =	28.00	16.00	South	Side	30.0	1.50
Ridge Y Location, Offset	8.00	0.00	East	Gable	90.0	1.00
Ridge Elevation, Height	13.62	4.62	West	Gable	90.0	0.00
Block 2	1 Story	E-W Ridge				
Location X,Y =	0.00	0.00	North	Side	30.0	1.50
Extent X,Y =	8.00	16.00	South	Side	30.0	1.50
Ridge Y Location, Offset	8.00	0.00	East	Gable	90.0	0.00
Ridge Elevation, Height	13.62	4.62	West	Gable	90.0	1.00

23M-007 450 adu.wsw Apr. 6, 2023 17:33:30

SHEATHING MATERIALS by WALL GROUP

				Sheathin	g					Fa	stener	S			Apply
Grp	Surf	Material	Ratng	Thick	GU	Ply	Or	Gvtv	Size	Type	RS	Eg	Fd	Bk	Notes
				in	in			lbs/in				in	in		
1	Ext	Struct Sh OSB	24/0	3/8	-	_	Horz	77500	8d	Box	N	6	12	Υ	3

Legend:

Grp – Wall Design Group number, used to reference wall in other tables (created by program)

Surf – Exterior or interior surface when applied to exterior wall

Ratng - Span rating, see SDPWS Table C4.2.3C

Thick - Nominal panel thickness

GU - Gvpsum underlav thickness

Ply - Number of plies (or layers) in construction of plywood sheets

Or – Orientation of longer dimension of sheathing panels or lumber planks. Dbl. = Double diagonal.

Gvtv - Shear stiffness in lb/in. of depth from SDPWS Tables C4.2.3A-B

Type – Fastener type from SDPWS Tables 4.3A-D:

Common: common wire nail; Box: galvanized box nail; Casing: casing nail; Roof: galvanized roofing nail; Cooler: cooler nail; WBoard: wallboard nail; Screw: drywall screw; Gauge: nail measured by gauge; Galv: galvanized gauge nail; GWB: Gypsum wallboard blued nail

Size - From Tables 4.3A-D and Table A1; shown in Wall Input fastener dropdown

Common nails: 6d = 0.113 x 2", 8d = 0.131 x 2.5", 10d = 0.148 x 3", 12d = 0.148 x 3.5"

Box or casing nails: $6d = 0.099 \times 2$, $8d = 0.113 \times 2.5$, $10d = 0.128 \times 3$, $12d = 0.126 \times 3.5$

Gauge, roofing and GWB nails: 13 ga = 0.92" x 1-1/8"; 11 ga = 0.120" x 1-1/8" (GWB nail for gypsum lath & plaster), 1-1/4" (gyp. L&P), 1-1/2" (wire lath & plaster, 1/2" fiberboard ,1/2" GWB), 1-3/4" (GSB, 5/8" GWB, 25/32" fiberboard, 2-ply GWB base), 2-3/8" (2-ply GWB face)

Cooler or wallboard nail: 5d = .086" x 1-5/8"; 6d = .092" x 1-7/8"; 8d = .113" x 2-3/8"; 6/8d = 6d base ply, 8d face ply for 2-ply GWB. Drywall screws: No. 6, 1-1/4" long.

RS – Ring-shank nails (non-shearwalls only), with increased withdrawal capacity as per NDS 12.2.3.2.

Eg – Panel edge fastener spacing. For lumber sheathing, no. of nails per board at shear wall boundary. For 2-ply GWB, spacing of all nails in face ply.

Fd - Field spacing interior to panels. For lumber sheathing, no. of nails per board at interior studs. For 2-ply GWB, spacing of all nails in face ply.

Bk – Sheathing is nailed to blocking at all panel edges; Y(es) or N(o)

Apply Notes - Notes below table legend which apply to sheathing side

Notes:

3. Shear capacity for current design has been increased to the value for 15/32" sheathing with same nailing because stud spacing is 16" max. or panel orientation is horizontal. See SDPWS Table 4.3A Note 2.

FRAMING MATERIALS and STANDARD WALL by WALL GROUP

	Wall Grp	Species	Grade	b in	d in	Spcg in	SG	E psi^6	Fcp	Standard Wall
Ī	1	D.Fir-L	No.2	1.50	5.50	16	0.50	1.60	625	

Legend:

Wall Grp - Wall Design Group

b – Stud breadth (thickness)

d - Stud depth (width)

Spcg – Maximum on-centre spacing of studs for design, actual spacing may be less.

SG - Specific gravity

E – Modulus of elasticity

Standard Wall - Standard wall designed as group.

Fcp - Compressive strength perpendicular to grain

Notes:

Check manufacture requirements for stud size, grade and specific gravity (G) for all shearwall hold-downs.

The following factors are applied to Fcp for compressive design and deformation under wall segment end studs:

Bearing area factor Cb from NDS 3.10.4, under window openings.

SHEARLINE, WALL and OPENING DIMENSIONS

North-south	Туре	Wall	Location	Exten		Length	FHS	Aspect	Height	Stude
Shearlines		Group	X [ft]	Start	End	[ft]	[ft]	Ratio	[ft]	S N
Line 1										
Level 1										
Line 1		1	8.00	0.00	16.00	16.00	7.47	-	9.00	_
Wall 1-1	Prf	1	8.00	0.00	16.00	16.00	7.47	-	-	2
Segment 1		_	-	0.00	3.50	3.50	2.72	2.57	_	-
Opening 1		-	-	3.50	6.50	3.00	3.00	-	4.00	-
Segment 2		-	-	6.50	11.25	4.75	4.75	1.89	-	-
Opening 2		-	-	11.25	14.25	3.00	3.00	-	4.00	-
Segment 3		-	-	14.25	16.00	1.75	1.75	5.14	-	-
Line 2										
Level 1										
Line 2		1	36.00	0.00	16.00	16.00	9.75	-	9.00	_
Wall 2-1	Seq	1	36.00	0.00	16.00	16.00	9.75	-	_	2
Segment 1	2	_	-	0.00	2.25	2.25	2.00	4.00	_	2 2
Opening 1		_	-	2.25	6.25	4.00	_	_	4.00	2 2 2
Segment 2		-	-	6.25	16.00	9.75	9.50	0.92	-	2
East-west	Type	Wall	Location	Exten		Length	FHS	Aspect	Height	Stude
Shearlines		Group	Y [ft]	Start	End	[ft]	[ft]	Ratio	[ft]	W E
Line A										
Level 1										
Line A		1	0.00	8.00	36.00	28.00	19.25	i –	9.00	_
Wall A-1	Prf	1	0.00	8.00	36.00	28.00	19.25	-	_	2
	Pri									_
Seament 1	PTI	_	_	8.00	11.67	3.67	2.99	2.45	_	_
Segment 1 Opening 1	PTI		-	8.00 11.67	11.67	3.67 3.00	2.99 3.00	2.45	- 4.00	_
Opening 1	PTI	-		11.67	14.67	3.00	3.00	-		
Opening 1 Segment 2	PTI	- -	-	11.67 14.67	14.67 29.25	3.00 14.58	3.00 14.58		4.00	-
Opening 1 Segment 2 Opening 2	PTI	- - -	-	11.67 14.67 29.25	14.67 29.25 33.25	3.00 14.58 4.00	3.00 14.58 4.00	- 0.62 -	4.00	-
Opening 1 Segment 2 Opening 2 Segment 3	PTI	- - -	- - -	11.67 14.67	14.67 29.25	3.00 14.58	3.00 14.58	0.62	4.00	-
Opening 1 Segment 2 Opening 2 Segment 3	PTI	- - -	- - -	11.67 14.67 29.25	14.67 29.25 33.25	3.00 14.58 4.00	3.00 14.58 4.00	- 0.62 -	4.00	-
Opening 1 Segment 2 Opening 2 Segment 3 Line B Level 1	PTI	- - - -	- - - -	11.67 14.67 29.25 33.25	14.67 29.25 33.25 36.00	3.00 14.58 4.00 2.75	3.00 14.58 4.00 1.68	0.62 - 3.27	4.00	-
Opening 1 Segment 2 Opening 2 Segment 3 Line B Level 1 Line B		- - - - -	16.00	11.67 14.67 29.25 33.25	14.67 29.25 33.25 36.00	3.00 14.58 4.00 2.75	3.00 14.58 4.00 1.68	0.62 - 3.27	4.00 - 4.00 -	- ·
Opening 1 Segment 2 Opening 2 Segment 3 Line B Level 1 Line B Wall B-1	Prf	- - - - - 1 1	- - - - 16.00 16.00	11.67 14.67 29.25 33.25	14.67 29.25 33.25 36.00 36.00	3.00 14.58 4.00 2.75 28.00 28.00	3.00 14.58 4.00 1.68 20.37 20.37	- 0.62 - 3.27	4.00 - 4.00 - 9.00	- · ·
Opening 1 Segment 2 Opening 2 Segment 3 Line B Level 1 Line B Wall B-1 Segment 1		- - - - - 1 1	16.00 16.00	11.67 14.67 29.25 33.25 8.00 8.00 8.00	14.67 29.25 33.25 36.00 36.00 36.00 11.75	3.00 14.58 4.00 2.75 28.00 28.00 3.75	3.00 14.58 4.00 1.68 20.37 20.37 3.13	- 0.62 - 3.27	4.00 - 4.00 - 9.00	- · · · · · · · · · · · · · · · · · · ·
Opening 1 Segment 2 Opening 2 Segment 3 Line B Level 1 Line B Wall B-1 Segment 1 Opening 1		- - - - - 1 1 -	16.00 16.00	11.67 14.67 29.25 33.25 8.00 8.00 8.00 11.75	14.67 29.25 33.25 36.00 36.00 36.00 11.75 13.75	3.00 14.58 4.00 2.75 28.00 28.00 3.75 2.00	3.00 14.58 4.00 1.68 20.37 20.37 3.13 2.00	- 0.62 - 3.27	4.00 - 4.00 - 9.00 - 4.00	- · ·
Opening 1 Segment 2 Opening 2 Segment 3 Line B Level 1 Line B Wall B-1 Segment 1 Opening 1 Segment 2		1 1	16.00 16.00 -	11.67 14.67 29.25 33.25 8.00 8.00 8.00 11.75 13.75	14.67 29.25 33.25 36.00 36.00 11.75 13.75 19.50	3.00 14.58 4.00 2.75 28.00 28.00 3.75 2.00 5.75	3.00 14.58 4.00 1.68 20.37 20.37 3.13 2.00 5.75	- 0.62 - 3.27 - - 2.40 - 1.57	4.00 - 4.00 - 9.00 - 4.00	- · · · · · · · · · · · · · · · · · · ·
Opening 1 Segment 2 Opening 2 Segment 3 Line B Level 1 Line B Wall B-1 Segment 1 Opening 1		- - - - - 1 1 -	16.00 16.00	11.67 14.67 29.25 33.25 8.00 8.00 8.00 11.75	14.67 29.25 33.25 36.00 36.00 36.00 11.75 13.75	3.00 14.58 4.00 2.75 28.00 28.00 3.75 2.00	3.00 14.58 4.00 1.68 20.37 20.37 3.13 2.00	- 0.62 - 3.27	4.00 - 4.00 - 9.00 - 4.00	- · · · · · · · · · · · · · · · · · · ·

Legend

Type – Seg = Segmented, Prf = Perforated, FT = FTAO (force transfer around openings), NSW = non-shearwall

Location – Position in structure perpendicular to wall

Length – Shear line: Distance between exterior perpendicular walls defining the shear line extent

Wall, segment, or opening: End-to-end length of the element

FHS – Depending on element, shows different definitions of full-height sheathing length (FHS):

Shear lines with multiple walls, segmented walls, or FTAO walls: Total shear-resisting FHS

Individual wall segments or walls without openings: Distance between hold-downs beff

Perforated walls: Sum of factored segment lengths bi defined in SDPWS 4.3.5.6

Aspect Ratio - Ratio of wall height to segment length (h/b); for FTAO walls, the aspect ratio of the central pier

Wall Group – Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall Studs: Number of end studs at the south and north or west and east ends of a wall segment or a perforated or FTAO wall.

If two wall group numbers listed, they are for rigid diaphragm and flexible diaphragm design.

Loads

WIND SHEAR LOADS (as entered or generated)

Level 1									Magnitu		Trib
Block	F	Element	Load	Wnd	Surf	Prof	Locatio		[lbs,plf,p		Ht
			Case	Dir	Dir		Start	End	Start	End	[ft]
		1 1			,		0.00	0.00	0 0	F0 4	
Block 1	M	L Gable	1	W->E	Wind	Line	0.00	8.00	0.0	52.4	
Block 1	W	L Gable	Min	W->E	Wind	Line	0.00	8.00	0.0	37.0	
Block 1	W	Wall	Min	W->E	Wind	Line	0.00	16.00	36.0		
Block 1	W	Wall	1	W->E	Wind	Line	0.00	16.00	51.0	0 0	
Block 1	W	R Gable	1	W->E	Wind	Line	8.00	16.00	52.4	0.0	
Block 1	M	R Gable	Min	W->E	Wind	Line	8.00	16.00	37.0	0.0	
Block 1	E	L Gable	1 1	W->E	Lee	Line	0.00	8.00	0.0	22.9	
Block 1	E	Wall		W->E	Lee	Line	0.00	16.00	22.3	37.0	
Block 1	E E	L Gable Wall	Min Min	W->E W->E	Lee	Line Line	0.00	8.00 16.00	0.0 36.0	37.0	
Block 1 Block 1	E	R Gable	Min	W->E	Lee Lee	Line	8.00	16.00	37.0	0.0	
Block 1	E	R Gable	1	W->E	Lee	Line	8.00	16.00	22.9	0.0	
Block 1	W	L Gable	1	E->W	Lee	Line	0.00	8.00	0.0	22.9	
Block 1	W	L Gable	Min	E->W	Lee	Line	0.00	8.00	0.0	37.0	
Block 1	W	Wall	Min	E->W	Lee	Line	0.00	16.00	36.0	37.0	
Block 1	W	Wall	1	E->W	Lee	Line	0.00	16.00	22.3		
Block 1	W	R Gable	1	E->W	Lee	Line	8.00	16.00	22.9	0.0	
Block 1	W	R Gable	Min	E->W	Lee	Line	8.00	16.00	37.0	0.0	
Block 1	E	Wall	1	E->W	Wind	Line	0.00	16.00	51.0	0.0	
Block 1	E	L Gable	1	E->W	Wind	Line	0.00	8.00	0.0	52.4	
Block 1	E	Wall	Min	E->W	Wind	Line	0.00	16.00	36.0	52.1	
Block 1	E	L Gable	Min	E->W	Wind	Line	0.00	8.00	0.0	37.0	
Block 1	E	R Gable	Min	E->W	Wind	Line	8.00	16.00	37.0	0.0	
Block 1	E	R Gable	1	E->W	Wind	Line	8.00	16.00	52.4	0.0	
Block 1	S	Wall	1	S->N	Wind	Line	8.00	36.00	51.0	0.0	
Block 1	S	Roof	Min	S->N	Wind	Line	8.00	37.00	21.9		
Block 1	S	Wall	Min	S->N	Wind	Line	8.00	36.00	36.0		
Block 1	S	Roof	1	S->N	Wind	Line	8.00	37.00	15.5		
Block 1	N	Roof	1	S->N	Lee	Line	8.00	37.00	46.6		
Block 1	N	Wall	1	S->N	Lee	Line	8.00	36.00	31.9		
Block 1	N	Roof	Min	S->N	Lee	Line	8.00	37.00	21.9		
Block 1	N	Wall	Min	S->N	Lee	Line	8.00	36.00	36.0		
Block 1	S	Roof	1	N->S	Lee	Line	8.00	37.00	46.6		
Block 1	S	Wall	1	N->S	Lee	Line	8.00	36.00	31.9		
Block 1	S	Wall	Min	N->S	Lee	Line	8.00	36.00	36.0		
Block 1	S	Roof	Min	N->S	Lee	Line	8.00	37.00	21.9		
Block 1	N	Roof	Min	N->S	Wind	Line	8.00	37.00	21.9		
Block 1	N	Wall	Min	N->S	Wind	Line	8.00	36.00	36.0		
Block 1	N	Roof	1	N->S	Wind	Line	8.00	37.00	15.5		
Block 1	N	Wall	1	N->S	Wind	Line	8.00	36.00	51.0		
-1 1 0		1 1			,		0.00	0.00	0 0	0.7.0	
Block 2	W	L Gable	Min	W->E	Wind	Line	0.00	8.00	0.0	37.0	
Block 2	W	L Gable	1	W->E	Wind	Line	0.00	8.00	0.0	52.4	
Block 2	W	R Gable	1	W->E	Wind	Line	8.00	16.00	52.4	0.0	
Block 2	M	R Gable	Min	W->E	Wind	Line	8.00	16.00	37.0	0.0	
Block 2	E	L Gable	Min	W->E	Lee	Line	0.00	8.00	0.0	37.0	
Block 2	E	L Gable	1	W−>E	Lee	Line	0.00	8.00	0.0	32.7	
Block 2	E	R Gable	1 Min	W->E	Lee	Line	8.00	16.00	32.7	0.0	
Block 2	E	R Gable	Min	W->E	Lee	Line	8.00	16.00	37.0	0.0	
Block 2	W	L Gable L Gable	1 Min	E->W	Lee	Line	0.00	8.00 8.00	0.0	32.7 37.0	
Block 2 Block 2	W	R Gable	Min 1	E->W	Lee	Line Line	8.00	16.00	32.7	0.0	
Block 2	W	R Gable R Gable	Min	E->W E->W	Lee Lee	Line	8.00	16.00	37.0	0.0	
Block 2	W E	L Gable	1	E->W	Wind	Line	0.00	8.00	0.0	52.4	
Block 2	E E	L Gable	Min	E->W	Wind	Line	0.00	8.00	0.0	37.0	
Block 2	E E	R Gable	Min	E->W	Wind	Line	8.00	16.00	37.0	0.0	
Block 2	E	R Gable	1	E->W	Wind	Line	8.00	16.00	52.4	0.0	
Block 2	S	Roof	1	S->N	Wind	Line	-1.00	8.00	15.5	0.0	
Block 2	S	Roof	Min	S->N	Wind	Line	-1.00	8.00	21.9		
Block 2	N	Roof	1	S->N	Lee	Line	-1.00	8.00	46.6		
Block 2	N	Roof	Min	S->N	Lee	Line	-1.00	8.00	21.9		
Block 2	S	Roof	Min	N->S	Lee	Line	-1.00	8.00	21.9		
Block 2	S	Roof	1	N->S	Lee	Line	-1.00	8.00	46.6		
Block 2	N N	Roof	Min	N->S	Wind	Line	-1.00	8.00	21.9		
	N	Roof	1	N->S	Wind	Line	-1.00	8.00	15.5		
Block 2											

Legend:

23M-007 450 adu.wsw Apr.

Apr. 6, 2023 17:33:30

Block - Block used in load generation

Accum. = loads from one block combined with another

Manual = user-entered loads (so no block)

F - Building face (north, south, east or west)

Element - Building surface on which loads generated or entered

Load Case - One of the following:

ASCE 7 All Heights: Case 1 or 2 from Fig 27.3-8 or minimum loads from 27.1.5

ASCE 7 Low-rise: Reference corner and Case A or B from Fig 28.3-1 or minimum loads from 28.3.4

Wind Dir - Direction of wind for loads with positive magnitude, also direction of MWFRS.

Surf Dir - Windward or leeward side of the building for loads in given direction

Prof - Profile (distribution)

Location - Start and end points on building element

Magnitude - Start = intensity of uniform and point loads or leftmost intensity of trapezoidal load, End = right intensity of trap load

Trib Ht - Tributary height of area loads only

Notes:

All loads entered by the user or generated by program are specified (unfactored) loads. The program applies a load factor of 0.60 to wind loads before distributing them to the shearlines.

WIND C&C LOADS

Block	Building	Wind	Level	Magnit	ude [psf]
	Face	Direction		Interior	End Zone
Block 1	West	Windward	1	21.3	26.3
Block 1	West	Windward	1	21.3	26.3
Block 1	West	Windward	1	21.3	26.3
Block 1	East	Leeward	1	21.3	26.3
			1	21.3	26.3
Block 1	East	Leeward			
Block 1	East	Leeward	1 1	21.3	26.3
Block 1	West	Leeward		21.3	26.3
Block 1	West	Leeward	1	21.3	26.3
Block 1	West	Leeward	1	21.3	26.3
Block 1	East	Windward	1	21.3	26.3
Block 1	East	Windward	1	21.3	26.3
Block 1	East	Windward	1	21.3	26.3
Block 1	South	Windward	1	21.3	26.3
Block 1	South	Windward	1	21.3	26.3
Block 1	South	Windward	1	21.3	26.3
Block 1	North	Leeward	1	21.3	26.3
Block 1	North	Leeward	1	21.3	26.3
Block 1	North	Leeward	1	21.3	26.3
Block 1	South	Leeward	1	21.3	26.3
Block 1	South	Leeward	1	21.3	26.3
Block 1	South	Leeward	1	21.3	26.3
Block 1	North	Windward	1	21.3	26.3
Block 1	North	Windward	1	21.3	26.3
Block 1	North	Windward	1	21.3	26.3

DEAD LOADS (for hold-down calculations)

Shear	Level	Profile	Tributary	Locatio	n [ft]	Mag [lbs,p	sf,psi]
Line			Width [ft]	Start	End	Start	End
A	1	Line		8.00	36.00	135.0*	
В	1	Line		8.00	36.00	135.0*	
1	1	Line		0.00	16.00	135.0*	
2	1	Line		0.00	16.00	135.0*	

BUILDING MASSES

Level 1							Magni		Trib
Force	Building	Block	Wall	Profile	Location		[lbs,plf	f,psf]	Width
Dir	Element		Line		Start	End	Start	End	[ft]
E-W	Roof	Block 1	1	Line	-1.50	17.50	280.0	280.0	
E-W	Roof	Block 1	2	Line	-1.50	17.50	300.0	300.0	
E-W	Roof	Block 2		Line	-1.50	17.50	100.0	100.0	
E-W	Roof	Block 2	1	Line	-1.50	17.50	80.0	80.0	
E-W	R Gable	Block 1	1	Line	0.00	8.00	69.3	0.0	
E-W	L Gable	Block 1	1	Line	8.00	16.00	0.0	69.3	
E-W	L Gable	Block 1	2	Line	0.00	8.00	69.3	0.0	
E-W	R Gable	Block 1	2	Line	8.00	16.00	0.0	69.3	
E-W	R Gable	Block 2		Line	0.00	8.00	69.3	0.0	
E-W	L Gable	Block 2		Line	8.00	16.00	0.0	69.3	
E-W	L Gable	Block 2	1	Line	0.00	8.00	69.3	0.0	
E-W	R Gable	Block 2	1	Line	8.00	16.00	0.0	69.3	
N-S	Roof	Block 1	А	Line	8.00	37.00	190.0	190.0	
N-S	Roof	Block 1	В	Line	8.00	37.00	190.0	190.0	
N-S	Roof	Block 2	A	Line	-1.00	8.00	190.0	190.0	
N-S	Roof	Block 2	В	Line	-1.00	8.00	190.0	190.0	
Both	Wall 1-1	n/a	1	Line	0.00	16.00	67.5	67.5	
Both	Wall 2-1	n/a	2	Line	0.00	16.00	67.5	67.5	
Both	Wall A-1	n/a	A	Line	8.00	36.00	67.5	67.5	
Both	Wall B-1	n/a	В	Line	8.00	36.00	67.5	67.5	
		,							

Leaend:

Force Dir - Direction in which the mass is used for seismic load generation, E-W, N-S, or Both

Building element - Roof, gable end, wall or floor area used to generate mass, wall line for user-applied masses, Floor F# - refer to Plan View for floor area number

Wall line - Shearline that equivalent line load is assigned to

Location - Start and end points of equivalent line load on wall line

Trib Width. - Tributary width; for user applied area loads only

SEISMIC LOADS

Level 1					
Force	Profile	Locatio	n [ft]	Mag [lbs,p	lf,psf]
Dir		Start	End	Start	End
E-W	Line	-1.50	0.00	76.0	76.0
E-W	Point	0.00	0.00	189	189
E-W	Line	0.00	8.00	89.4	117.1
E-W	Line	8.00	16.00	117.1	89.4
E-W	Point	16.00	16.00	189	189
E-W	Line	16.00	17.50	76.0	76.0
N-S	Line	-1.00	8.00	38.0	38.0
N-S	Point	0.00	0.00	55	55
N-S	Point	8.00	8.00	219	219
N-S	Line	8.00	36.00	51.5	51.5
N-S	Point	36.00	36.00	163	163
N-S	Line	36.00	37.00	38.0	38.0

WoodWorks® Shearwalls

Legend:

Loads in table can be accumulation of loads from several building masses, so they do not correspond with a particular building element. Location - Start and end of load in direction perpendicular to seismic force direction

Notes:

All loads entered by the user or generated by program are specified (unfactored) loads. The program applies a load factor of 0.70 and redundancy factor to seismic loads before distributing them to the shearlines.

23M-007 450 adu.wsw Apr.

Apr. 6, 2023 17:33:30

Design Summary

SHEARWALL DESIGN

Wind Shear Loads, Flexible Diaphragm

All shearwalls have sufficient design capacity.

Components and Cladding Wind Loads, Out-of-plane Sheathing

All shearwalls have sufficient design capacity.

Components and Cladding Wind Loads, Nail Withdrawal

All shearwalls have sufficient design capacity.

Seismic Loads, Flexible Diaphragm

All shearwalls have sufficient design capacity.

HOLD-DOWN DESIGN

Wind Loads, Flexible Diaphragm

All hold-downs have sufficient design capacity.

Seismic Loads, Flexible Diaphragm

All hold-downs have sufficient design capacity.

COMPRESSION FORCE DESIGN

Wind Loads, Flexible Diaphragm

Bottom plate has sufficient perpendicular-to-grain compressive capacity under all wall end studs.

Seismic Loads, Flexible Diaphragm

Bottom plate has sufficient perpendicular-to-grain compressive capacity under all wall end studs.

This Design Summary does not include failures that occur due to excessive story drift from ASCE 7 CC.2.2 (wind) or 12.12 (seismic). Refer to Story Drift table in this report to verify this design criterion.

Refer to the Deflection table for possible issues regarding fastener slippage (SDPWS Table C4.2.3D).

23M-007 450 adu.wsw

Apr. 6, 2023 17:33:30

Flexible Diaphragm Wind Design ASCE 7 Directional (All Heights) Loads

SHEAR RESULTS

W	For	ASD	Shear Force	[plf]	Asp	-Cub		Allo	owable \$	Shea	r [plf]		Resp.
Gp	Dir	v	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Co	С	Cmb	V [lbs]	Ratio
1^	Both	188.4	226.5	1554	-	.91	-	304	0.92		304	2505	0.62
-	Both	_	_	1256	-	-	-	365	-		-	3559	-
1	Both	_	_	1256	_	1.0	-	365	-		-	3559	-
-	Both	0.0	-	0	_	1.0	-	365	-		365	_	-
-	Both	128.8	-	1256	-	1.0	-	365	-		365	3559	0.35
W	For	ASD	Shear Force	[plf]	Asp	-Cub		Allo	owable	Shea	r [plf]		Resp.
Gp	Dir	v	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Co	С	Cmb	V [lbs]	Ratio
1	Both	35.1	41.5	737	-	.92	_	309	0.92		309	6486	0.11
1	Both	35.1	39.2	737	-	.97	-	327	0.92		327	6865	0.11
	Gp 1^ - 1 - W Gp	Gp Dir 1^ Both - Both - Both - Both - Both W For Gp Dir	Gp Dir v 1^ Both 188.4 - Both - 1 Both - - Both 0.0 - Both 128.8 W For ASD Gp ASD Gp I Both 35.1	Gp Dir v vmax/vft 1^ Both 188.4 226.5 - Both - - 1 Both - - - Both 0.0 - - Both 128.8 - W For Gp ASD Shear Force vmax/vft 1 Both 35.1 41.5	Gp Dir v vmax/vft V [lbs] 1^ Both 188.4 226.5 1554 - Both - - 1256 1 Both - - 0 - Both 0.0 - 0 - Both 128.8 - 1256 W For Gp ASD Shear Force [plf] V [lbs] 1 Both 35.1 41.5 737	Gp Dir v vmax/vft V [lbs] Int 1^ Both 188.4 226.5 1554 - - Both - - 1256 - 1 Both - - 0 - - Both 128.8 - 1256 - W For ASD Shear Force [plf] Asp Int 1 Both 35.1 41.5 737 -	Gp Dir v vmax/vft V [lbs] Int Ext 1^ Both 188.4 226.5 1554 - .91 - Both - - 1256 - - 1 Both - - 1256 - 1.0 - Both 0.0 - 0 - 1.0 - Both 128.8 - 1256 - 1.0 W For Gp ASD Shear Force [plf] Asp-Cub Int Ext 1 Both 35.1 41.5 737 - .92	Gp Dir v vmax/vft V [lbs] Int Ext Int 1^ Both 188.4 226.5 1554 - .91 - - Both - - 1256 - - - 1 Both - - 1256 - 1.0 - - Both 0.0 - 0 - 1.0 - - Both 128.8 - 1256 - 1.0 - W For Gp ASD Shear Force [plf] Asp-Cub Int Ext Int 1 Both 35.1 41.5 737 - .92 -	Gp Dir v vmax/vft V [lbs] Int Ext Int Ext 1^ Both 188.4 226.5 1554 - .91 - 304 - Both - - 1256 - - - 365 1 Both - - 1256 - 1.0 - 365 - Both 128.8 - 1256 - 1.0 - 365 W For ASD Shear Force [plf] Asp-Cub Int Ext Allo Gp Dir v vmax/vft V [lbs] Int Ext Int Ext	Gp Dir v vmax/vft V [lbs] Int Ext Int Ext Co 1^ Both 188.4 226.5 1554 - .91 - 304 0.92 - Both - - 1256 - - - 365 - 1 Both 0.0 - 0 - 1.0 - 365 - - Both 128.8 - 1256 - 1.0 - 365 - W For Both ASD Shear Force [plf] Asp-Cub Int Allowable State Co 1 Both 35.1 41.5 737 - .92 - 309 0.92	Gp Dir v vmax/vft V [lbs] Int Ext Int Ext Co C 1^ Both 188.4 226.5 1554 - .91 - 304 0.92 - Both - - 1256 - - - 365 - 1 Both 0.0 - 0 - 1.0 - 365 - - Both 128.8 - 1256 - 1.0 - 365 - - Both 128.8 - 1256 - 1.0 - 365 - - Both 128.8 - 1256 - 1.0 - 365 - - - Asp-Cub Int Ext Co C	Gp Dir v vmax/vft V [lbs] Int Ext Int Ext Co C Cmb 1^ Both 188.4 226.5 1554 - .91 - 304 0.92 304 - Both - - 1256 - - - 365 - - - Both 0.0 - 0 - 1.0 - 365 - - 365 Both 128.8 - 1256 - 1.0 - 365 - 365 Both 128.8 - 1256 - 1.0 - 365 - 365 Both 128.8 - 1256 - 1.0 - 365 - 365 W For Maximum Vilbs Vilbs Asp-Cub Allowable Shear [pif] Both 35.1 41.5 737 - .92 - 309 </td <td>Gp Dir v vmax/vft V [lbs] Int Ext Int Ext Co C Cmb V [lbs] 1^ Both 188.4 226.5 1554 - .91 - 304 0.92 304 2505 - Both - - 1256 - - - 365 - - 3559 - Both 0.0 - 0 - 1.0 - 365 - - 3559 - Both 128.8 - 1256 - 1.0 - 365 - 365 - - Both 128.8 - 1256 - 1.0 - 365 - 365 - - Both 128.8 - 1256 - 1.0 - 365 - 365 3559 - Both 128.8 - 1256 - 1.0</td>	Gp Dir v vmax/vft V [lbs] Int Ext Int Ext Co C Cmb V [lbs] 1^ Both 188.4 226.5 1554 - .91 - 304 0.92 304 2505 - Both - - 1256 - - - 365 - - 3559 - Both 0.0 - 0 - 1.0 - 365 - - 3559 - Both 128.8 - 1256 - 1.0 - 365 - 365 - - Both 128.8 - 1256 - 1.0 - 365 - 365 - - Both 128.8 - 1256 - 1.0 - 365 - 365 3559 - Both 128.8 - 1256 - 1.0

Leaend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir - Direction of wind force along shearline.

v – Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS)

vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.3.4

FTAO walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers.

V – ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment

Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.5.3. For segment or FTAO pier: Aspect ratio factor from SDPWS 4.3.5.5.1. For perforated wall: Either Cub or sum bi / FHS, where bi is segment length adjusted per SDPWS 4.3.3.4.

Int, Ext - Nominal unit shear capacity of interior and exterior sheathing, factored by Table 4.3-1 Note 3 for framing specific gravity and Note 10 for presence of hold-downs. For wall segments, also include unblocked factor Cub and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-6.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using Eqns. 4.3-3,-4.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V – Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "S" indicates that the seismic design criterion was critical in selecting wall.

Notes:

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,1.

Hold-Down and Compression Design (flexible wind design)

Level 1			9 (willa design	<u> </u>	Tensile Ho	ld-down				
Line-		Locati	on [ft]	Load			Stud Force	[lbe]		Сар	Crit
1	Daaitha		on [it]			•			Hald dame	•	
Wall	Posit'n	X	Y	Case	Shear	Dead	Uplift	Cmb'd	Hold-down	[lbs]	Resp.
Line 1											
1-1	L End	8.00	0.12	1	2650	456		2195	HDU2-SDS	3075	0.71
1-1	L End	8.00	0.12	1	-2650	759		3409	Compression	10312	0.33
1-1	R End	8.00	11.13	1	2650	456		2195	HDU2-SDS	3075	0.71
1-1	R End	8.00	11.13	1	-2650	759		3409	Compression	10312	0.33
1-1	R Op 2	8.00	14.38	1	0	118		118	Compression	10312	0.01
1-1	R End	8.00	15.88	1	0	118		118	Compression	10312	0.01
Line 2											
1	V Elem	36.00	0.12	1	0	152		152	Compression		
i	V Elem	36.00	2.13	1 1	0	152		152	Compression		
2-1	R Op 1	36.00	6.38	1	1541	395		1146	HDU2-SDS	3075	0.37
2-1	R Op 1	36.00	6.38	1	-1541	658		2199	Compression	11601	0.19
2-1	R End	36.00	15.88	1	1541	395		1146	HDU2-SDS	3075	0.37
2-1	R End	36.00	15.88	1	-1541	658		2199	Compression	10312	0.21
Line A									_		
A-1	L End	8.13	0.00	1	-378	1890		2268	Compression	10312	0.22
A-1	R End	35.88	0.00	1 1	-378	1890		2268	Compression	10312	0.22
Line B									_		
B-1	L End	8.13	16.00	1	-357	1890		2247	Compression	10312	0.22
B-1	R End	35.88	16.00	1	-357	1890		2247	Compression	10312	0.22

Legend:

Line-Wall:

At wall or opening - Shearline and wall number

At vertical element - Shearline

Posit'n – Position of stud pack that hold-down is attached to or which is applying compression force:

V Elem – Vertical element: column or strengthened studs required where not at wall end or opening

L or R End - At left or right wall end

L or R Op n – At left or right side of opening n

t @ Op n – Uplift force t at opening n from offset opening in perforated wall above, from SDPWS 4.3.6.4.2.1

Location - Co-ordinates in Plan View

Load Case - Results are for critical load case:

ASCE 7 All Heights: Case 1 or 2 from Fig. 27.3-8

ASCE 7 Low-rise: Windward corner(s) and Case A or B from Fig. 28.3-1

ASCE 7 Minimum loads (27.1.5 / 28.3.4): "Min"

Tensile Hold-down or Compressive Stud Force – Upwards force on hold-down at one end of the wall or downward force on bottom plate under studs at the other end, for each force direction. Includes forces transferred from upper levels.

Shear – Overturning component = $V \times h / beff$ from SDPWS Eqn. 4.3-7; V = b force on segment, ASD-factored by 0.60; h = b height, beff = b segment length – (tension stud pack width + b hold-down anchor bolt offset) – (1/2 compression stud pack width). For perforated walls = $V \times h / b$ sum (bi) from SDPWS Eqn. 4.3-8.

Dead – Dead load resisting component, factored for ASD by 0.60 for tension and 1.0 for compression

Uplift – Uplift wind load component, factored for ASD by 0.60

Cmb'd – Sum of ASD-factored overturning, dead and uplift forces. May also include the uplift force t from perforated walls from SDPWS 4.3.6.4.2.1 when openings are staggered.

Hold-down – Device model number from hold-down database; "Compression" for bearing of end stud pack on bottom plate

Cap – Hold-downs: Allowable ASD tension load from database; Compression: allowable ASD bearing force = Ct CM Cb Fcp A; A = cross sectional area of end studs. Refer to Framing materials table for details

Crit. Resp. - Critical Response = Combined ASD force / Allowable ASD tension load

Notes:

HDU2-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5": Uses 6 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

Refer to the Shear Line Dimensions table for wall height h, effective segment length beff and perforated wall adjusted sum of bi, to the Story Table for joist depth, and to the Shear Results table for perforated factor Co.

Most severe of wind load cases is used for overturning calculation.

Designer is responsible for design of connection from wall to floor or foundation for shear force shown in Shear Results table. Refer to SDPWS 4.3.6.4.3 for foundation anchor bolt requirements.

Apr. 6, 2023 17:33:30

COLLECTOR FORCES (flexible wind design)

Level 1		- 5 ,			Drag S	Strut	Strap/Blo	cking
Line-	Position on Wall	Location	n [ft]	Load	Force	[lbs]	Force	[lbs]
Wall	or Opening	X	Y	Case	>	:		<
Line 1								
1-1	Left Opening 1	8.00	3.50		453	-453		
1-1	Right Opening 1	8.00	6.50		161	-161		
1-1	Left Opening 2	8.00	11.25		461	-461		
Line 2					1			
2-1	Right Opening 1	36.00	6.25		-491	491		
Line A	3 1 3				1			
A-1	Left Opening 1	11.67	0.00		56	-56		
A-1	Right Opening 1	14.67	0.00		-100	100		
A-1	Left Opening 2	29.25	0.00		121	-121		
A-1	Right Opening 2	33.25	0.00		-42	42		
Line B								
B-1	Left Opening 1	11.75	16.00		48	-48		
в-1	Right Opening 1	13.75	16.00		-38	38		
B-1	Left Opening 2	19.50	16.00		48	-48		
B-1	Right Opening 2	24.50	16.00		-148	148		
						ĺ		

Legend:

Line-Wall - Shearline and wall number

Position...- Side of opening or wall end that drag strut is attached to

Location - Co-ordinates in Plan View

Load Case - Results are for critical load case:

ASCE 7 All heights Case 1 or 2

ASCE 7 Low-rise corner; Case A or B

Drag strut Force - Axial force in transfer element at openings, gaps, or changes in design shear along shearline. + : tension; - : compression.

Based on ASD-factored shearline force (vmax from 4.3.6.4.1.1 for perforated walls)

Strap/Blocking Force - For FTAO walls, force transferred from above and below opening to shearwall pier.

- -> Due to shearline force in the west-to-east or south-to-north direction
- <- Due to shearline force in the east-to-west or north-to-south direction

MWFRS DEFLECTION (flexible wind design)

These deflections are used to determine shearwall stiffness for force distribution

Wall,	W						Bend	ling	Shear		Nail slip		Hold	Total
segment	Gp	Dir	Srf	V	b	h	Α	Defl	Defl	Vn	en	Defl	Defl	Defl
				plf	ft	ft	sq.in	in	in	lbs	in	in	in	in
Level 1														
Line 1												Ì		
1-1	1	Both	Ext	226.5	7.47	9.00	16.5	.007	.026	113	.027	.184	0.11	0.32
Line 2												1		
2-1,2	1	Both	Ext	128.8	9.75	9.00	16.5	.003	.015	64	.010	.064	0.05	0.13
Line A												Ì		
A-1	1	Both	Ext	41.5	19.25	9.00	16.5	.000	.005	21	.001	.008	0.00	0.02
Line B												Ì		
B-1	1	Both	Ext	39.2	20.37	9.00	16.5	.000	.005	20	.001	.007	0.00	0.01

Legend:

Wall, segment - Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B.

W Gp - Wall design group, refer to Sheathing and Framing Materials tables.

Dir – Force direction

Srf - Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions.

v – ASD shear force per unit distance on wall segment.

Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table.

Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b - Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h - Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged.

Defl - Horizontal shear wall deflection due to given term:

Bending = $8vh^3$ / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table For i studs at one end and j at the other, A = 2 (i^2 j + j^2 i) / (i + j)^2 x area of one stud, based on Ex. C4.3.4-3

Shear = vh / Gvtv; Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table.

Nail slip = $0.75 \text{ h} \times \text{en}$; en from Table C4.2.3D, of form aVn^b for WSP, varies linearly to published value for other materials.

Vn – ASD shear force per nail along panel edge.

Hold – Anchorage system (hold-down) = da x h / beff.

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl – Deflection from bending + shear + nail slip + hold-down, as per Eqn. 4.3-2.

For FTAO walls, the average of the values for the segments, as per APA T555.

SERVICEABILITY DEFLECTION (flexible wind design)

These deflections are used to determine story drift

Wall,	W						Bend	ling	Shear	ı	Nail slip		Hold	Total
segment	Gp	Dir	Srf	v plf	b ft	h ft	A sq.in	Defl in	Defl in	Vn Ibs	en in	Defl in	Defl in	Defl in
Level 1				P.I.			oqıııı			1.00				
Line 1												Ì		
1-1	1	Both	Ext	418.3	7.47	9.00	16.5	.012	.049	209	.086	.580	0.18	0.82
Line 2			ĺ									Ì		
2-1,2	1	Both	Ext	237.9	9.75	9.00	16.5	.005	.028	119	.030	.202	0.08	0.31
Line A			1									Ì		
A-1	1	Both	Ext	76.6	19.25	9.00	16.5	.001	.009	38	.004	.024	0.00	0.04
Line B			ĺ									Ì		
B-1	1	Both	Ext	72.3	20.37	9.00	16.5	.001	.008	36	.003	.022	0.00	0.03

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B.

W Gp - Wall design group, refer to Sheathing and Framing Materials tables.

Dir - Force direction

Srf – Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions.

v – Shear force per unit distance on wall segment using 1.0 Wa = wind load based on serviceability wind speeds from ASCE 7 CC.2.2, Figs. CC.2-1 - CC.2-4.

Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table.

Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b - Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h - Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged. Defl — Horizontal shear wall deflection due to given term:

Bending = $8vh^3$ / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table For i studs at one end and j at the other, A = $2(i^2 j + j^2 i) / (i + j)^2 x$ area of one stud, based on Ex. C4.3.4-3

Shear = vh / Gvtv; Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table.

Nail slip = 0.75 h x en; en from Table C4.2.3D, of form aVn^b for WSP, varies linearly to published value for other materials.

Vn – Serviceability shear force per nail along panel edge.

Hold - Anchorage system (hold-down) = da x h / beff.

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl - Deflection from bending + shear + nail slip + hold-down, as per Eqn. 4.3-2.

For FTAO walls, the average of the values for the segments, as per APA T555.

MWFRS HOLD-DOWN DISPLACEMENT (flexible wind design)

These displacements are used to determine deflections for force distribution

Wall,		Hold-	Tensio n	Vert.	Displace	ment	Slipp	oage	Shrink	Comp.	Crush	Total	Horz
segment	Dir	down	force lbs	Manuf in	Add in	da in	Vf lbs	da in	+Extra	force lbs	da in	da in	Defl in
Level 1 Line 1			130										
1-1 Line 2	Both	HDU2-SDS	2195	.063	.000	0.063	-	-	.014	3410	0.01	0.09	0.11
2-1,2 Line A	Both	HDU2-SDS	1146	.033	.000	0.033	-	-	.014	2199	0.01	0.05	0.05
A-1	Both	HDU2-SDS	-756	.000	.000	0.000	-	-	.000	2268	0.01	0.01	0.00
Line B B-1	Both	HDU2-SDS	-777	.000	.000	0.000	-	-	.000	2247	0.01	0.01	0.00

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B

Dir - Force direction

Tens., Comp. force – Accumulated ASD hold-down tension force T and end stud compression force C from overturning, dead loads and wind uplift da - Vertical displacements due to the following components:

Vert. Displacement - Elongation when slippage calculated separately; displacement when combined elongation/slippage used

Manuf - Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD uplift force / ASD hold-down capacity) x max ASD elongation or displacement

* - Maximum strength-level elongation or displacement is used. May result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es)

Ab = bolt cross-sectional area

Es = steel modulus = 29000000 psi

L = Lb - Lb

Lb = Total bolt length shown in Storey Information table

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage – Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = Vf / (270,000 D^1.5) (NDS 11.3.6); D = bolt diameter, Vf = Tension force T / number of fasteners

Shrink + Extra - Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (24% fabrication - 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table

Crush - Deformation of bottom plate at compression end of wall segment

= 0.02" x [r/0.73, r<0.73; (1 + (r - 0.73)/0.27), 0.73 < r<1; 2r^3, r > 1] r = fcp / Fcp'; Fcp' = Ct CM Fcp; fcp = C/A, A = cross sectional area of end studs

Total da - Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl – Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) h and b are shown in Deflection table, beff in the Shear Wall Dimensions table

SERVICEABILITY HOLD-DOWN DISPLACEMENT (flexible wind design)

These displacements are used to determine deflections for story drift

Wall,		Hold-	Tensio n	Vert.	Displace	ement	Slip	page	Shrink	Comp.	Crush	Total	Horz
segment	Dir	down	force lbs	Manuf	Add	da in	Vf Ibs	da in	+Extra	force lbs	da	da in	Defl in
Level 1			ins	in	in		IDS		in	IDS	in		- 111
Line 1 1-1	Both	HDU2-SDS	4053	.116	.000	0.116	_	_	.014	5736	0.02	0.15	0.18
Line 2 2-1,2	Both	HDU2-SDS	2116	.061	.000	0.061	_	_	.014	3574	0.01	0.08	0.08
Line A							_	_					
A-1 Line B	Both	HDU2-SDS	-1397	.000	.000	0.000	-	-	.000	2792	0.01	0.01	0.00
B-1	Both	HDU2-SDS	-1435	.000	.000	0.000	_	-	.000	2753	0.01	0.01	0.00

Leaend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B

Dir - Force direction

Tens., Comp. force – Accumulated hold-down tension force T and end stud compression force C from overturning, dead loads and wind uplift using load combination D + Wa from ASCE 7 CC.2.2

Wa = wind load based on serviceability wind speeds from ASCE 7 CC.2.2, Figs. CC.2-1 - CC.2-4

da - Vertical displacements due to the following components:

Vert. Displacement - Elongation when slippage calculated separately; displacement when combined elongation/slippage used

Manuf – Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD uplift force / ASD hold-down capacity) x max strength-level elongation or displacement

* - Maximum strength-level elongation or displacement is used. May result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es)

Ab = bolt cross-sectional area

Es = steel modulus = 29000000 psi

L = Lb - Lh

Lb = Total bolt length shown in Storey Information table

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage - Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = $Vf/(270,000 D^{1.5})$ (NDS 11.3.6); \bar{D} = bolt diameter, Vf = Tension force T/number of fasteners

Shrink + Extra - Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (24% fabrication - 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table

Crush - Deformation of bottom plate at compression end of wall segment

= 0.02" $\times [r/0.73, r < 0.73; (1 + (r - 0.73)/0.27), 0.73 < r < 1; 2 r^3, r > 1]$

r = fcp / Fcp'; Fcp' = Ct CM Fcp; fcp = C / A, A = cross sectional area of end studs

Total da - Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl – Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width)

h and b are shown in Deflection table, beff in the Shear Wall Dimensions table

23M-007 450 adu.wsw Apr. 6, 2023 17:33:30

STORY DRIFT (flexible wind design)

		Wall	Actual Sto	Allow	Allowable Story Drift			
Level	Dir	height ft	Max defl	Line	hs ft	Drift in	Ratio	
1		9.00			9.00			
	N<->S		0.82	1		1.08	0.76	
	E<->W		0.04	A		1.08	0.03	

Legend:

Max defl – Largest deflection for any shearline on level in this direction; refer to Serviceability Deflections table

Line - Shearline with largest deflection on level in this direction

hs – Story height = Height of walls plus joist depth between this level and the one above.

Drift = Allowable story drift on this level = story height / 100

Ratio - Proportion of allowable story drift experienced, on this level in this direction.

23M-007 450 adu.wsw

Apr. 6, 2023 17:33:30

Out-of-plane Wind Design

COMPONENTS AND CLADDING by SHEARLINE

N	Iorth-Sou	th	Sh	eathing [ps	f]		Faster	ner Withdra	wal [lbs]		Service	Cond
;	Shearline	s	Force	Сар	Force/	For	ce	Cap	Force	/Сар	Fact	tors
Line	Lev	Grp			Сар	End	Int		End	Int	Temp	Moist
1	1	1	15.8	178.1	0.09	21.1	17.1	23.4	0.90	0.73	1.00	0.25
2	1	1	15.8	178.1	0.09	21.1	17.1	23.4	0.90	0.73	1.00	0.25
	East-Wes	t	Sh	eathing [ps	f]		Faster	ner Withdra	wal [lbs]		Service	Cond
	Shearline	s	Force	Сар	Force/	For	ce	Cap	Force	/Сар	Fact	tors
Line	Lev	Grp			Сар	End	Int	•	End	Int	Temp	Moist
A	1	1	15.8	178.1	0.09	21.1	17.1	23.4	0.90	0.73	1.00	0.25
В	1	1	15.8	178.1	0.09	21.1	17.1	23.4	0.90	0.73	1.00	0.25

Legend:

Force - C&C end zone exterior pressures using negative (suction) coefficient in ASCE 7 Figure 30.3-1 added to interior pressure using coefficients from Table 26.13-1

Cap - Out-of-plane capacity of exterior sheathing from SDPWS Tables 3.2.1A/B, divided by 1.6 for short-term ASD loads as per 3.2.1. Assumes continuous over 2 spans (table note 3).

Fastener Withdrawal:

Force - Force tributary to each nail in end zone and interior zone

Cap - Factored withdrawal capacity of individual nail according to NDS 12.2-3

Grp - Wall Design Group (results for all design groups for rigid, flexible design listed for each wall) Sheathing:

23M-007 450 adu.wsw

Apr. 6, 2023 17:33:30

Flexible Diaphragm Seismic Design

SEISMIC INFORMATION

Level	Mass	Area	Story Shear Fx [lbs] Shear Resistance [lbs]			Diaphragm	Force [lbs]			
	[lbs]	[sq.ft]	E-W	N-S	E-W	N-S	E	-W	l	N-S
							Fpx	Design	Fpx	Design
1 All	22597 22597	448.0	1581 2258	1581 2258	9536 -	4331 -	2055 -	2055 -	2055 -	2055

Legend:

Mass – Sum of all generated and input building masses on level = wx in ASCE 7 Eqn. 12.8-12.

Story Shear – Total ASD-factored shear force induced at level x from Eqn. 12.8-11.

Shear Resistance – Lateral design strength of all shear-resisting elements on story, for use in weak story evaluation (4.1.8).

Diaphragm Force – used by Shearwalls only for drag strut forces, as per Exception to 12.10.2.1.

Fpx - Minimum ASD-factored force for diaphragm design from Eqns. 12.10-1, -2, and -3.

Design = The greater of the story shear and Fpx + transfer forces from discontinuous shearlines, factored by overstrength (omega) as per 12.10.1.1. Omega = 2.5 as per 12.2-1.

Redundancy Factor p (rho):

E-W 1.00, N-S 1.00

Automatically calculated according to ASCE 7 12.3.4.2.

Vertical Earthquake Load Ev

Ev = 0.2 Sds D; Sds = 0.65; Ev = 0.130 D unfactored; 0.091 D factored; total dead load factor: 0.6 - 0.091 = 0.509 tension, 1.0 + 0.091 = 1.091 compression.

SHEAR RESULTS (flexible seismic design)

N-S	w	For	ASD	Shear Force	[plf]	Asp	-Cub		Allo	owable \$	Shea	r [plf]		Resp.
Shearlines	Gp	Dir	V	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Co	С	Cmb	V [lbs]	Ratio
Line 1														
Level 1														
Ln1, Lev1	1	Both	113.4	136.3	936	-	.91	-	217	0.92		217	1789	0.52
Line 2														
Ln2, Lev1	- '	Both	-	_	645	-	-	-	261	-		-	2542	-
Wall 2-1	1	Both	-	_	645	-	1.0	-	261	-		-	2542	-
Seg. 1	-	Both	0.0	-	0	-	1.0	-	261	-		261	_	-
Seg. 2	-	Both	66.2	_	645	-	1.0	-	261	-		261	2542	0.25
E-W	W	For	ASD	Shear Force	[plf]	Asp	-Cub		Allo	owable	Shea	r [plf]		Resp.
Shearlines	Gp	Dir	V	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Co	С	Cmb	V [lbs]	Ratio
Line A														
Level 1														
LnA, Lev1	1	Both	37.6	44.5	790	_	.92	-	221	0.92		221	4633	0.17
Line B														
LnB, Lev1	1	Both	37.6	42.0	790	-	.97	-	233	0.92		233	4903	0.16

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir – Direction of seismic force along shearline.

v – Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS)

vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.3.4

FTAO walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers.

V – ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment

Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.5.3. For segment or FTAO pier: Aspect ratio factor from SDPWS 4.3.5.5.1. For perforated wall: Either Cub or sum bi / FHS, where bi is segment length adjusted per SDPWS 4.3.3.4.

Int, Ext - Nominal unit shear capacity of interior and exterior sheathing, factored by Table 4.3-1 Note 3 for framing specific gravity and Note 10 for presence of hold-downs. For wall segments, also include unblocked factor Cub and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-6.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using Eqns. 4.3-3,-4.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V - Total factored shear capacity of shearline, wall or segment.

Crit Resp — Response ratio = v/Cmb = design shear force/unit shear capacity. "W" indicates that the wind design criterion was critical in selecting wall.

Notes:

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,1.

Hold-Down and Compression Design (flexible seismic design)

Level 1	•		,		Tensile Hold	-down				
Line-		Locati	ion [ft]	or Cor	npressive St	id Force [lbs	s]		Cap	Crit
Wall	Posit'n	X	Y	Shear	Dead	Ev	Cmb'd	Hold-down	[lbs]	Resp.
Line 1										
1-1	L End	8.00	0.12	1595	456	69	1208	HDU2-SDS	3075	0.39
1-1	L End	8.00	0.12	-1595	759	69	2423	Compression	10312	0.23
1-1	R End	8.00	11.13	1595	456	69	1208	HDU2-SDS	3075	0.39
1-1	R End	8.00	11.13	-1595	759	69	2423	Compression	10312	0.23
1-1	R Op 2	8.00	14.38	0	118	11	129	Compression	10312	0.01
1-1	R End	8.00	15.88	0	118	11	129	Compression	10312	0.01
Line 2										
	V Elem	36.00	0.12	0	152	14	166	Compression		
	V Elem	36.00	2.13	0	152	14	166	Compression		
2-1	R Op 1	36.00	6.38	792	395	60	457	HDU2-SDS	3075	0.15
2-1	R Op 1	36.00	6.38	-792	658	60	1509	Compression	11601	0.13
2-1	R End	36.00	15.88	792	395	60	457	HDU2-SDS	3075	0.15
2-1	R End	36.00	15.88	-792	658	60	1509	Compression	10312	0.15
Line A										
A-1	L End	8.13	0.00	-405	1890	172	2467	Compression	10312	0.24
A-1	R End	35.88	0.00	-405	1890	172	2467	Compression	10312	0.24
Line B										
B-1	L End	8.13	16.00	-383	1890	172	2445	Compression	10312	0.24
B-1	R End	35.88	16.00	-383	1890	172	2445	Compression	10312	0.24

Legend:

Line-Wall:

At wall or opening - Shearline and wall number

At vertical element - Shearline

Posit'n - Position of stud pack that hold-down is attached to:

V Elem – Vertical element: column or strengthened studs required where not at wall end or opening

L or R End - At left or right wall end

L or R Op n – At left or right side of opening n

t @ Op n – Uplift force t at opening n from offset opening in perforated wall above, from SDPWS 4.3.6.4.2.1

Location - Co-ordinates in Plan View

Tensile Hold-down or Compressive Stud Force – Upwards force on hold-down at one end of the wall or downward force on bottom plate under studs at the other end, for each force direction. Includes forces transferred from upper levels.

Shear – Overturning component = $V \times h / beff$ from SDPWS Eqn. 4.3-7; V = force on segment, ASD-factored by 0.70; h = wall height, beff = wall segment length – (tension stud pack width + hold-down anchor bolt offset) – (1/2 compression stud pack width). For perforated walls = $V \times h / Co$ sum (bi) from SDPWS Eqn. 4.3-8.

Dead - Dead load resisting component, factored for ASD by 0.60 for tension and 1.0 for compression

Ev - Vertical seismic load effect from ASCE 7 12.4.2.2 = -0.2 Sds x ASD factor x unfactored D = 0.152 SDS x factored D = 0.

Cmb'd – Sum of ASD-factored overturning, dead and vertical seismic forces. May also include the uplift force t from perforated walls from SDPWS 4.3.6.4.2.1 when openings are staggered.

Hold-down - Device model number from hold-down database; "Compression" for bearing of end stud pack on bottom plate

Cap – Hold-downs: Allowable ASD tension load from database; Compression: Allowable ASD bearing force = Ct CM Cb Fcp A; A = cross sectional area of end studs. Refer to Framing materials table for details.

Crit. Resp. - Critical Response = Combined ASD force/Allowable ASD tension load

Notes:

HDU2-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5": Uses 6 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

Combined force from ASCE 7 2.4.1 load combination 10 = - (0.6D - 0.7Ev + 0.7Eh); Eh (from 12.4.2.1) = - shear overturning force

Refer to the Shear Line Dimensions table for wall height h, effective segment length beff and perforated wall adjusted sum of bi, to the Story Table for joist depth, and to the Shear Results table for perforated factor Co.

Designer is responsible for design of connection from wall to floor or foundation for shear force shown in Shear Results table. Refer to SDPWS 4.3.6.4.3 for foundation anchor bolt requirements.

COLLECTOR FORCES (flexible seismic design)

Level 1				Drag S	Strut	Strap/Blocking
Line-	Position on Wall	Location	[ft]	Force	[lbs]	Force [lbs]
Wall	or Opening	X	Y	>	<	> <
Line 1						
	Shearline force			1216	1216	
1-1	Left Opening 1	8.00	3.50	354	-354	
1-1	Right Opening 1	8.00	6.50	126	-126	
1-1	Left Opening 2	8.00	11.25	361	-361	
Line 2						
	Shearline force			839	839	
2-1	Right Opening 1	36.00	6.25	-328	328	
Line A	2 - 11 - 3					
=	Shearline force			1028	1028	
A-1	Left Opening 1	11.67	0.00	77	-77	
A-1	Right Opening 1	14.67	0.00	-139		
A-1	Left Opening 2	29.25	0.00	169	-169	
A-1	Right Opening 2	33.25	0.00	-58	58	
Line B						
	Shearline force			1028	1028	
B-1	Left Opening 1	11.75	16.00	67	-67	
B-1	Right Opening 1	13.75		-53	53	
B-1	Left Opening 2	19.50		68	-68	
B-1	Right Opening 2	24.50	16.00	-206	206	
"	ragic opening 2	24.50	10.00	200	200	

Legend:

Line-Wall - Shearline and wall number

Position...- Side of opening or wall end that drag strut is attached to

Location - Co-ordinates in Plan View

Drag strut Force - Axial force in transfer element at openings, gaps, or changes in design shear along shearline. + : tension; - : compression.

Based on ASD-factored shearline force shown. For SDC C-F, it is the greater of the design shearline force and the diaphragm force Fpx, added to shearline force from story above and to forces transferred from discontinuous shearlines factored by overstrength (omega) as per 12.10.1.1.

Refer to Seismic Information table for diaphragm forces and omega factor.

For SDC D-F, if horizontal torsional irregularities 2, 3, or 4 are input, or vertical irregularity 4 detected or input, 25% increase from 12.3.3.4 applied. For perforated walls, this force is converted to vmax using 4.3.6.4.1.1.

Strap/Blocking Force - For FTAO walls, force transferred from above and below opening to shearwall pier.

- -> Due to shearline force in the west-to-east or south-to-north direction
- <- Due to shearline force in the east-to-west or north-to-south direction

DEFLECTION (flexible seismic design)

Wall,	W						Bend	ling	Shear		Nail slip		Hold	Total
segment	Gp	Dir	Srf	٧	b	h	A	Defl	Defl	Vn	en	Defl	Defl	Defl
Level 1				plf	ft	ft	sq.in	in	in	lbs	in	in	in	in
Line 1														
1-1	1	Both	Ext	194.8	7.47	9.00	16.5	.006	.023	97	.021	.139	0.09	0.25
Line 2	1	D 11		0.4 5	0.75	0 00	16 5	0.00	011	47	005	026	0 04	0 00
2-1,2 Line A	1	Both	Ext	94.5	9.75	9.00	16.5	.002	.011	47	.005	.036	0.04	0.08
A-1	1	Both	Ext	63.5	19.25	9.00	16.5	.001	.007	32	.003	.017	0.00	0.03
Line B				60.0	00.05	0 00	16.5	0.01	0.00	2.0	000	015	0 00	0 00
B-1	1	Both	Ext	60.0	20.37	9.00	16.5	.001	.007	30	.002	.015	0.00	0.03

Wall, segment – Wall and segment between openings, e.g. B-3.2 = second segment on Wall 3 on Shearline B.

W Gp – Wall design group, refer to Sheathing and Framing Materials tables.

WoodWorks® Shearwalls

Dir - Force direction.

Srf – Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions.

v – Unfactored (strength-level) shear force per unit distance on wall segment = ASD force / 0.70, as per ASCE 7 12.8.6,.

Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table.

Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b - Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h – Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged. Defl - Horizontal shear wall deflection due to given term:

Bending = 8vh^3 / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table

For i studs at one end and j at the other, $A = 2(i^2 j + j^2 i) / (i + j)^2 x$ area of one stud, based on Ex. C4.3.4-3

Shear = vh / Gvtv: Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table.

Nail slip = 0.75 h x en; en from Table C4.2.3D, of form aVn^b for WSP, varies linearly to published value for other materials.

Vn – Strength-level shear force per nail along panel edge.

Hold - Anchorage system (hold-down) = da x h / beff.

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl – Deflection from bending + shear + nail slip + hold-down, as per Eqn. 4.3-2.

For FTAO walls, the average of the values for the segments, as per APA T555.

HOLD-DOWN DISPLACEMENT (flexible seismic design)

Wall,		Hold-	Tensio n	Vert.	Displace	ment	Slipp	age	Shrink	Comp.	Crush	Total	Horz
segment	Dir	down	force lbs	Manuf in	Add in	da in	Vf lbs	da in	+Extra in	force lbs	da in	da in	Defl in
Level 1 Line 1													
1-1 Line 2	Both	HDU2-SDS	1694	.046	.000	0.046	-	-	.014	3440	0.01	0.07	0.09
2-1,2 Line A	Both	HDU2-SDS	624	.018	.000	0.018	-	-	.014	2138	0.01	0.04	0.04
A-1	Both	HDU2-SDS	-877	.000	.000	0.000	-	-	.000	3470	0.01	0.01	0.00
Line B B-1	Both	HDU2-SDS	-909	.000	.000	0.000	-	_	.000	3438	0.01	0.01	0.00

Leaend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B

Dir - Force direction

Tens., Comp. force - Accumulated strength-level hold-down tension force T and end compression force C from overturning, dead loads and vertical earthquake loads

da - Vertical displacements due to the following components:

Vert. Displacement - Elongation when slippage calculated separately; displacement when combined elongation/slippage used

Manuf - Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD uplift force / ASD hold-down capacity) x max strength-level elongation or displacement

* - Maximum strength-level elongation or displacement is used. Máy result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es)

Ab = bolt cross-sectional area

Es = steel modulus = 29000000 psi

L = Lb - Lb

Lb = Total bolt length shown in Storey Information table

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage – Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = Vf / (270,000 D^1.5) (NDS 11.3.6); D = bolt diameter, Vf = Tension force T / number of fasteners

Shrink + Extra - Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (24% fabrication - 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table

Crush - Deformation of bottom plate at compression end of wall segment

= 0.02" x [r/0.73, r<0.73; (1 + (r - 0.73)/0.27), 0.73 < r<1; 2r/3, r>1] r = fcp / Fcp'; Fcp' = Ct CM Fcp; fcp = C/A, A = cross sectional area of end studs

Total da - Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl – Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) h and b are shown in Deflection table, beff in the Shear Wall Dimensions table

23M-007 450 adu.wsw A

Apr. 6, 2023 17:33:30

STORY DRIFT (flexible seismic design)

		Wall		Actual Story Drift (in)						Allowable S	Story Drift	
Level	Dir	height	Max	Line	Max	Center	C of M	C of M	hsx	Delta a	Ra	tio
		ft	dxe		dx	of Mass	dxe	dx	ft	in	Max	C of M
1		9.00							9.00	2.70		
1	N<->S		0.25	1	0.97	10.56	0.19	0.71			0.36	0.26
	E<->W		0.03	A	0.12	8.00	0.03	0.11			0.04	0.04

ASCE 7 Eqn. 12.8-15: dx = dxe x Cd / le

Deflection amplification factor Cd from Table 12.2-1 = (E-W), 4.0 (N-S)

Importance factor le = 1.00

Leaend

Max dxe - Largest deflection for any shearline on level in this direction; refer to Deflections table

Line - Shearline with largest deflection on level in this direction

hsx – Story height in ASCE Table 12.12-1 = Height of walls plus joist depth between this level and the one above.

Max dx – Largest amplified deflection on level in this direction using ASCE 7 Eq'n 12.8-15

C of M dxe - Deflection at the center of mass of this level; from interpolating deflections at adjacent shearlines.

C of M dx - Amplified deflection at center of mass using Eq'n 12.8-15. Does not include differences between top and bottom diaphragm deflection. Delta a = Allowable story drift on this level from ASCE 7 Table 12.12-1

Ratio - Proportion of allowable story drift experienced, on this level in this direction.

23M-007 450 adu.wsw Apr. 6, 2023 17:33:30

WoodWorks® Shearwalls Detailed Load Generation 2023

```
Design Code: IBC 2021/AWC SDPWS 2021
                                                                  SEISMIC LOAD GENERATION
ASCE 7-16 12.8 Equivalent Lateral Force Procedure
 Site Information:
 Risk Category II - All others
 SFRS = Bearing wall structure
 Regular
 Site class D
S1 = 0.35, (Fv = 1.95)

SS = 0.84, (Fa = 1.16)
 Seismic Design Category D
 Ta: Calculated - refer to Equations and to Base Shear table, below
 R: Refer to Base Shear table below
Legend:

V - Total design base shear

Vx - Design story shear, level x

Fx - Lateral force induced in level x

W - Total seismic dead load on structure

Fyx - Dead load tributary to story x

M - Total seismic dead load on structure

Fx - Leteral force induced in level x

W - Total seismic dead load on structure

Fyx - Dead load tributary to story x

Fyx - Dead load tributary to story x

Fyx - Dead load tributary to story x

Fyx - Design force on indered in level x (floor of x+1)

Fyx - Design force on shearline j, level x

Fyx - Design force on shearline j, level x

Fyx - Design force on shearline force

Fyyx - Diaphragm design shearline force

Fyyx - Collector shearline force

Fyyx - Collector shearline force

Fyyx - Force, load from mass element e

Fyyx - Force, load from mass element e

Fyyx - Portion of Fe, Fpe applied to line j

Cvx - Vertical distribution factor, level x

R - Response modification factor

Cu - Coefficient for upper limit on period T

Cs - Seismic design coefficient

SDI - Design ls spectral response acceleration

SS - Mapped ls spectral response acceleration

Fyyx - Vert. discontinuous shearline force

Tyyx - Vert. discontinuous shearline force

Tyyx - Collector shearline force

Fyyx - Force, load from mass element e

Fyyx - Force, load from m
 Legend:
Fej, Fpej - Portion of Fe, Fpe applied to line j Omega - Overstrength factor
SDC - Seismic Design Category SFRS - Seismic force resisting system
Equations:
Fx = Cvx V

Fx = 0.01 wx
                                                                                                  Eqn 12.8-11 (SDC B-F)
                                                                                                  Eqn 1.4-1 (SDC A)
 Fpx = wx SUM(Fi)/SUM(wi), i = x to n
                                                                                                 Eqn 12.10-1
             = Cs W
                                                                                                  Eqn 12.8-1
 V
Vx
            = SUM(Fi), i = x to n
                                                                                                 Eqn 12.8-13
Cvx = hx^k wx/SUM(wi hi^k) i = 1 to n
k = k(T)
                                                                                                 Eqn 12.8-12
                                                                                                  Note, 12.8-12
Cscalc = Sds Ie/R
                                                                                                 Eqn 12.8-2
Csmax = Sd1 Ie/(R T)
                                                                                                Eqn 12.8-3
 Csmin = max (0.044 \text{ Ie Sds}, 0.01)
                                                                                                 Egn 12.8-5
Csmin = 0.5 S1 Ie/R (Sds >= 0.6g)
                                                                                               Eqn 12.8-6
Ta = Ct hn^(3/4), hn in m

Ie = Ie(risk category)
                                                                                              Eqn 12.8-7
                                                                                                 Table 1.5-2
Tmax = Ta Cu
Cu = Cu (SD1)
                                                                                                  12.8.2
                                                                                                 Table 12.8-1
            = 2/3 Fa SS
= 2/3 Fv S1
 SDS
                                                                                                 Egns 11.4-1,4-3
SD1
                                                                                                Eqns 11.4-2,4-4
 Fa = Fa(SS, Site Class)
                                                                                                Table 11.4-1
Fv = Fv(S1, Site Class)
SDC = SDC(SDS, SD1, occupancy)
                                                                                                 Table 11.4-2
                                                                                                 Tables 11.6-1,6-2
                                                                                                 Table 12.2-1
 Omega = Omega(SFRS)
Fe = Fx we / wx
Fpe = Fpx we / wx
                                                                                                  Assumption
                                                                                                  Assumption
 Vjx (flexible diaphragm) = SUM(Fej) + Vj, x+1 12.8.4
Vjx (rigid diaphragm) =
                                                                                                  See Torsional Analysis Details,
                                                                                                  F = Vx, CL = centroid of Fe's and <math>Vj, x+1's
 Vpjx = Vjx using Fpe, and Omega * Vdj,x+1 12.10.1.1
 Vcjx = Vjx
                                                                                                  12.10.2 (SDC A,B)
 Vcjx
            = max(Vjx,Vpjx)
                                                                                                  12.10.2.1 - Exception (SDC C-F)
User Input and Source:
 Site Classes A-F
                                                                                                  Table 20.3-1
                                                                                                  Table 1.5-1
Risk Category
                                                                                              Site specific study
 Fa and Fv for site profile F, maybe E
R (also calculated)
                                                                                                 Table 12.2-1
T (also calculated using Ta)
                                                                                                 deformational analysis
 Irregularities
                                                                                                 12.3.2,3; Tables 12.3-1,2
 SFRS
                                                                                                  Table 12.2-1
```

Total Design Base Shear:

Ie 1.00	SDC D	W (1bs) 22597	SDS 0.650	SD1 0.455	Cu 1.400	Tmax 0.173	Ta 0.123	k 1.000
	R	Т	SS	SDS	Cscalc	Csmax Csm	nin Cs	V (lbs)
N-S	6.5	0.123	0.84	0.650	0.100	0.568 0	0.029 0.10	0 2258
E-W	6.5	0.123	0.84	0.650	0.100	0.568 0	0.029 0.10	0 2258

The first SDS value shown, used for Seismic Design Category, diaphragm design force limits, and out-of-plane forces, is not limited by ASCE 7 12.8.1.3. SDS values shown in lower table are for Cs and Ev calculations and may implement 12.8.1.3.

Manually added or modified seismic loads and forces do not contribute to base shear.

Distribution of Base Shear to Levels:

Level	hx	WX	hx * wx	Cvx	Fx (lbs)	Vx (l	bs)
	(ft)	(lbs)	(ft-lbs)		N-S	E-M	N-S	E-M
1	9.00	22597	203373	1.00	2258	2258	2258	2258

Manually added or modified seismic loads and forces are not included in the distribution of base shear.

Unfactored seismic loads for Level 1 -

Uniactored	seismic loads	for Level 1	-		
Dir. No.	Start	End	Profile	Magnitude (lbs, plf) To
N<->S 1	-1.00	8.00	Line	38.0	38.0
N<->S 2	0.00	0.00	Point	55	55
N<->S 3	8.00	36.00	Line	51.5	51.5
N<->S 4	8.00	8.00	Point	219	219
N<->S 5	36.00	37.00	Line	38.0	38.0
N<->S 6	36.00	36.00	Point	163	163
W<->E 1	-1.50	0.00	Line	76.0	76.0
W<->E 2	0.00	8.00	Line	89.4	117.1
W<->E 3	0.00	0.00	Point	189	189
W<->E 4	8.00	16.00	Line	117.1	89.4
W<->E 5	16.00	17.50	Line	76.0	76.0
W<->E 6	16.00	16.00	Point	189	189

WoodWorks® Shearwalls Detailed Load Generation 2023

Design Code: IBC 2021/AWC SDPWS 2021

WIND LOAD GENERATION MWFRS Procedure: ASCE 7-16 Directional (All heights) C&C Procedure: ASCE 7 Ch. 30 Part 1 (h <= 60 ft.)

Enclosure = Partially open Internal gust factor Cgi = 2.0 Occupancy = Category II - All others Exposure = Exposure C Rigid building - Static analysis Case 2 Loads at 75% Eccentricity N-S loads = 15%, E-W loads = 15%

Ground Elevation: = 0 feet

Site Information:

Legend:

p - Design wind pressure (see Equations) h - Mean roof height z - Height of interest q - Velocity pressure G - Gust factor theta - Roof angle Cp - External pressure factor B - Building width GCp - Combined exposure and gust factor L - Building length GCpi - Internal pressure coefficient V - Basic wind speed Ke - Ground elevation factor Kz - Velocity pressure exposure coefficient Kzt - Topographic factor Kd - Wind directionality factor zg - Ground elevation

c, zmin, epsilon-bar, 1 - Terrain exposure constants used to calculate G hE, zg, alpha - Terrain exposure constants used to calculate K

Equations:

MWFRS Pressure Equation: p = q * G * Cp C&C Pressure Equation: p = q * (GCp - GCpi)Other Equations: $q = 0.00256 * Kz * Kd * Kzt * Ke * V^2$ $Ke = e^{(-0.0000362 zg)}$ $\begin{array}{l} \text{Kz} = 2.01 \, * \, (\,\,\,\text{max}(z,\,\,\text{hE}) \,\,/\,\,\,\text{zg}\,\,) \,\, ^{\circ} \,\, (\,\,2 \,\,/\,\,\,\text{a}\,\,) \,\, \\ \text{Gz} = \,\,\text{min}(0.85,\,\,0.925 \,\,*\,\,\,(1\,+\,5.8 \,\,*\,\,\,(\text{c} \,\,*\,\,\,(\text{max}(0.6 \,\,*\,\,\text{h, zmin}) \,\,/\,\,\,33) \,\, \\ \,\, ^{\circ} \,\, (-1/6)) \,\, * \,\, ((\,\,1\,\,/\,\,(\,\,1\,+\,0.63 \,\,*\,\,\,((\,(\text{B}\,+\,\text{h}) \,\,/\,\,(1\,\,*\,\,(\,(\text{max}(\,\,0.6 \,\,)) \,\,) \,\,) \,\,) \,\, \\ \end{array}$ * h, zmin) / 33)) ^ (e))) ^ (0.63)))) ^ (1/2))) / (1 $+ 5.8 * (c * (max(0.6 * h, zmin) / 33) ^ (-1/6))))$

Data (all loads):

Kd = 0.85, GCpi = 0.18, Ke = 1.000Terrain Exposure Constants: = 15

= 0.20С = 900 zq hΕ = 15

epsilon-bar = 0.201 = 500alpha = 9.5

Units: ft, lbs, ft/s

MAIN WIND FORCE RESISTING SYSTEM (MWFRS)

MWFRS - Block 1: EW x NS = 28.00×16.00 Mean Roof Height = 11.31

Leve	l Face	Direction	р	q	GCp	Ср	Gz	z-G	Kz	z-K	Kzt z-	Kzt	theta	L/B	h/L
1	North	Windward	11.34	16.7	0.68	0.80	0.85	6.8	0.85	6.8	1.00	_	30.0	0.57	0.71
1	North	Leeward	-7.09	16.7	-0.43	-0.50	0.85	11.3	0.85	11.3	1.00	-	30.0	0.57	0.71
Roof	North	Leeward	-8.50	16.7	-0.51	-0.60	0.85	11.3	0.85	11.3	1.00	-	30.0	0.57	0.71
Roof	North	Windward	2.83	16.7	0.17	0.20	0.85	11.3	0.85	11.3	1.00	-	30.0	0.57	0.71
1	East	Windward	11.34	16.7	0.68	0.80	0.85	6.8	0.85	6.8	1.00	-	90.0	1.75	0.40
1	East	Leeward	-4.96	16.7	-0.30	-0.35	0.85	11.3	0.85	11.3	1.00	-	90.0	1.75	0.40
1	East	Leeward	-4.96	16.7	-0.30	-0.35	0.85	11.3	0.85	11.3	1.00	-	90.0	1.75	0.40
1	East	Windward	11.34	16.7	0.68	0.80	0.85	10.4	0.85	10.4	1.00	-	90.0	1.75	0.40
1	East	Leeward	-4.96	16.7	-0.30	-0.35	0.85	11.3	0.85	11.3	1.00	-	90.0	1.75	0.40
1	East	Windward	11.34	16.7	0.68	0.80	0.85	10.4	0.85	10.4	1.00	-	90.0	1.75	0.40
1	South	Windward	11.34	16.7	0.68	0.80	0.85	6.8	0.85	6.8	1.00	-	30.0	0.57	0.71
1	South	Leeward	-7.09	16.7	-0.43	-0.50	0.85	11.3	0.85	11.3	1.00	-	30.0	0.57	0.71
Roof	South	Leeward	-8.50	16.7	-0.51	-0.60	0.85	11.3	0.85	11.3	1.00	-	30.0	0.57	0.71
Roof	South	Windward	2.83	16.7	0.17	0.20	0.85	11.3	0.85	11.3	1.00	-	30.0	0.57	0.71
1	West	Windward	11.34	16.7	0.68	0.80	0.85	6.8	0.85	6.8	1.00	-	90.0	1.75	0.40
1	West	Leeward	-4.96	16.7	-0.30	-0.35	0.85	11.3	0.85	11.3	1.00	-	90.0	1.75	0.40
1	West	Leeward	-4.96	16.7	-0.30	-0.35	0.85	11.3	0.85	11.3	1.00	-	90.0	1.75	0.40
1	West	Windward	11.34	16.7	0.68	0.80	0.85	10.4	0.85	10.4	1.00	-	90.0	1.75	0.40
1	West	Leeward	-4.96	16.7	-0.30	-0.35	0.85	11.3	0.85	11.3	1.00	-	90.0	1.75	0.40
1	West	Windward	11.34	16.7	0.68	0.80	0.85	10.4	0.85	10.4	1.00	-	90.0	1.75	0.40
														1 1 110	2011 202

Job #23M-007 450

MWFRS - Block 2: EW x NS = 8.00×16.00 Mean Roof Height = 11.31

Level Face	Direction	р	q	GCp	Ср	Gz	z-G	Kz	z-K	Kzt	z-Kzt	theta	L/B	h/L
Roof North	Leeward	-8.50	16.7	-0.51	-0.60	0.85	11.3	0.85	11.3	1.00		30.0	2.00	0.71
Roof North	Windward	2.83	16.7	0.17	0.20	0.85	11.3	0.85	11.3	1.00	-	30.0	2.00	0.71
1 East	Leeward	-7.09	16.7	-0.43	-0.50	0.85	11.3	0.85	11.3	1.00	_	90.0	0.50	1.41
1 East	Windward	11.34	16.7	0.68	0.80	0.85	10.4	0.85	10.4	1.00	_	90.0	0.50	1.41
1 East	Leeward	-7.09	16.7	-0.43	-0.50	0.85	11.3	0.85	11.3	1.00	_	90.0	0.50	1.41
1 East	Windward	11.34	16.7	0.68	0.80	0.85	10.4	0.85	10.4	1.00	_	90.0	0.50	1.41
Roof South	Leeward	-8.50	16.7	-0.51	-0.60	0.85	11.3	0.85	11.3	1.00	_	30.0	2.00	0.71
Roof South	Windward	2.83	16.7	0.17	0.20	0.85	11.3	0.85	11.3	1.00	_	30.0	2.00	0.71
1 West	Leeward	-7.09	16.7	-0.43	-0.50	0.85	11.3	0.85	11.3	1.00	_	90.0	0.50	1.41
1 West	Windward	11.34	16.7	0.68	0.80	0.85	10.4	0.85	10.4	1.00	_	90.0	0.50	1.41
1 West	Leeward	-7.09	16.7	-0.43	-0.50	0.85	11.3	0.85	11.3	1.00	_	90.0	0.50	1.41
1 West	Windward	11.34	16.7	0.68	0.80	0.85	10.4	0.85	10.4	1.00	_	90.0	0.50	1.41

COMPONENTS AND CLADDING (C&C)

C&C - Block 1: EW x NS = 28.00×16.00 Mean Roof Height = 11.31

Leve	l Face		Direction	р	q	GCp	Ср	Gz	z-G	Kz	z-K	Kzt	z-Kzt	theta	L/B	h/L
1	North	E	Leeward	-26.34	16.7	-1.40	0.00	0.00	0.0	0.85	11.3	1.00	-	30.0	0.57	0.71
1	North		Leeward	-21.34	16.7	-1.10	0.00	0.00	0.0	0.85	11.3	1.00	_	30.0	0.57	0.71
1	North	Ε	Windward	-26.34	16.7	-1.40	0.00	0.00	0.0	0.85	11.3	1.00	-	30.0	0.57	0.71
1	North		Windward	-21.34	16.7	-1.10	0.00	0.00	0.0	0.85	11.3	1.00	-	30.0	0.57	0.71
1	East	Ε	Leeward	-26.34	16.7	-1.40	0.00	0.00	0.0	0.85	11.3	1.00	_	90.0	1.75	0.40
1	East		Leeward	-21.34	16.7	-1.10	0.00	0.00	0.0	0.85	11.3	1.00	_	90.0	1.75	0.40
1	East	Ε	Windward	-26.34	16.7	-1.40	0.00	0.00	0.0	0.85	11.3	1.00	-	90.0	1.75	0.40
1	East		Windward	-21.34	16.7	-1.10	0.00	0.00	0.0	0.85	11.3	1.00	-	90.0	1.75	0.40
1	South	Ε	Leeward	-26.34	16.7	-1.40	0.00	0.00	0.0	0.85	11.3	1.00	-	30.0	0.57	0.71
1	South		Leeward	-21.34	16.7	-1.10	0.00	0.00	0.0	0.85	11.3	1.00	-	30.0	0.57	0.71
1	South	Ε	Windward	-26.34	16.7	-1.40	0.00	0.00	0.0	0.85	11.3	1.00	-	30.0	0.57	0.71
1	South		Windward	-21.34	16.7	-1.10	0.00	0.00	0.0	0.85	11.3	1.00	-	30.0	0.57	0.71
1	West	Ε	Leeward	-26.34	16.7	-1.40	0.00	0.00	0.0	0.85	11.3	1.00	_	90.0	1.75	0.40
1	West		Leeward	-21.34	16.7	-1.10	0.00	0.00	0.0	0.85	11.3	1.00	-	90.0	1.75	0.40
1	West	Ε	Windward	-26.34	16.7	-1.40	0.00	0.00	0.0	0.85	11.3	1.00	-	90.0	1.75	0.40
1	West		Windward	-21.34	16.7	-1.10	0.00	0.00	0.0	0.85	11.3	1.00	-	90.0	1.75	0.40
C&C -	- Bloc	ς :	2: EW x NS	8 = 8.	00 x 1	16.00	Mean Ro	of Hei	ght =	11.31						
Leve	l Face		Direction	מו	a	GCp	Cp	Gz	z-G	Kz	z-K	Kzt.	z-Kzt.	theta	- Т _г /В	h/I

Level Face Direction p q GCp Cp Gz z-G Kz z-K Kzt z-Kzt theta L/B h/L

Critical force:

56

121

-42

```
V - Total shear line force(lbs)
Vw - Total force on perforated shear wall(lbs)
V / L - Diaphragm shear force(plf)
v - Unit shear wall force(plf)
vmax - Perforated shear wall force = Vw / Co / sum(bi) (plf)
sum(bi) - Sum of wall segment lengths adjusted for narrow segments(ft)
FHS - Sum of full - height segment lengths on wall(ft)
L - Length of shear line, including gaps and openings(ft)
Co - perforated wall shear capacity adjustment factor
Seg w / vmax - Wall segment for which v is set to vmax.
Other v - Force on the other wall segments = (Vw - vmax * bs) / (FHS - bs)
Drag strut force at - Sum of (V / L - v) * di along shear line(lbs), where di is the length of
segments, openings or gaps.Locations shown are from start of shear line.
Critical force - Largest drag strut force at each location derived from setting v = vmax on each
segment independently(lbs)
Shear wall 1-1, Level 1
W->E and S->N seismic design, flexible diaphragm
vmax = 177.2, V/L = 76.0, Co = 0.918, FHS = 8.25, sum (bi) = 7.47
Seg w/ Seg Other Drag strut force at
vmax Length v
1 3.5 125.4
                         3.50 6.50 11.25
                         354
                                126
                             -120
                      108
         4.75 107.0
2
                                       361
Critical force:
                        354
                             126
                                       361
Shear wall 1-1, Level 1
W->E and S->N wind design, flexible diaphragm vmax = 226.5, V/L = 97.1, Co = 0.918, FHS = 8.25, sum (bi) = 7.47
Seg w/ Seg Other Drag strut force at
vmax Length v
1 3.5 160.3
                        3.50 6.50 11.25
                       453
                                161
                                       461
2
         4.75 136.7
                       138
                              -153
Critical force:
                        453
                              161
                                       461
Shear wall 1-1, Level 1
E->W and N->S wind design, flexible diaphragm
vmax = 226.5, V/L = 97.1, Co = 0.918, FHS = 8.25, sum (bi) = 7.47
Seg w/ Seg Other Drag strut force at
      Length v
3.5 160.3
                        3.50 6.50 11.25
vmax
                     -453 -161 -461
1
                              153
-161
                                     -461
2
         4.75 136.7 -138
Critical force:
                       -453
                                     -461
Shear wall 1-1, Level 1
E->W and N->S seismic design, flexible diaphragm
vmax = 177.2, V/L = 76.0, Co = 0.918, FHS = 8.25, sum (bi) = 7.47
Seg w/ Seg Other
                        Drag strut force at
vmax Length v
1 3.5 125.4
                         3.50 6.50 11.25
                       -354
                              -126
                                     -361
         4.75 107.0
                       -108
                               120
                                      -361
                              -126
Critical force:
                       -354
                                      -361
Shear wall A-1, Level 1
W->E and S->N seismic design, flexible diaphragm
vmax = 57.8, V/L = 36.7, Co = 0.923, FHS = 21.0, sum (bi) = 19.25
Seg w/ Seg Other
                         Drag strut force at
vmax Length v
                        11.67 14.67 29.25 33.25
         3.67
               47.0
                        77
                                     118
                                             -28
                               -33
1
                              -139
        14.58
                28.7
                         -29
                                       169
                                               22
        2.75
                47.6
                        40
                              -70
                                       89
Critical force:
                         77
                              -139
                                       169
                                              -58
Shear wall A-1, Level 1
W->E and S->N wind design, flexible diaphragm
\begin{array}{l} \text{vmax} = 41.5, \; \text{V/L} = 26.3, \; \text{Co} = 0.923, \; \text{FHS} = 21.0, \; \text{sum (bi)} = 19.25 \\ \text{Seg w/} \quad \text{Seg} \quad \text{Other} \qquad \text{Drag strut force at} \end{array}
vmax Length v
                       11.67 14.67 29.25 33.25
                33.7
                        56
                                              -20
1
        3.67
                               -23
                                       8.5
                             -100
-50
        14.58 20.6
                         -21
                                       121
                                              16
                                       64
        2.75 34.1
3
                         29
                                              -42
                             -100
```

```
Shear wall A-1, Level 1
E->W and N->S wind design, flexible diaphragm
vmax = 41.5, V/L = 26.3, Co = 0.923, FHS = 21.0, sum (bi) = 19.25
Seg w/ Seg Other
                      Drag strut force at
vmax Length v
                      11.67 14.67 29.25 33.25
        3.67
               33.7
                               23
                                     -85
                                            20
1
                       -55
              20.6
                        21
 2
        14.58
                              100
                                     -121
                                             -16
3
        2.75 34.1
                       -29
                              50
                                     -64
                                             42
Critical force:
                       -55
                              100
                                    -121
Shear wall A-1, Level 1
\textsc{E->W} and N->S seismic design, flexible diaphragm
vmax = 57.8, V/L = 36.7, Co = 0.923, FHS = 21.0, sum (bi) = 19.25
Seg w/ Seg Other
                       Drag strut force at
vmax Length v
                      11.67 14.67 29.25
                                           33.25
       3.67
               47.0
                      -77
                              33
                                    -118
                                            28
1
        28.7
2.75
 2
       14.58
                       29
                              139
                                    -169
                                             -22
 3
                       -40
                               70
                                     -89
                                             58
Critical force:
                       -77
                              139
                                    -169
                                             58
Shear wall B-1, Level 1
W->E and S->N seismic design, flexible diaphragm
vmax = 54.6, V/L = 36.7, Co = 0.923, FHS = 21.0, sum (bi) = 20.37
Seg w/ Seg Other Drag strut force at
                      11.75 13.75 19.50 24.50
vmax Length v
                                    57
        3.75
               47.7
                       67
 1
                              -6
                                           -126
                              -35
                                     68
         5.75
                         38
 2
               46.8
                                           -116
 3
        11.5
               42.0
                        20
                              -53
                                     -23
                                           -206
Critical force:
                         67
                              -53
                                      68
Shear wall B-1, Level 1
W \rightarrow E and S \rightarrow N wind design, flexible diaphragm
vmax = 39.2, V/L = 26.3, Co = 0.923, FHS = 21.0, sum (bi) = 20.37
Seg w/ Seg Other
                       Drag strut force at
                       11.75 13.75 19.50 24.50
vmax Length v
                       48
                              -4
                                     41
        3.75
               34.2
                                           -91
              33.5
                        27
                              -25
 2
         5.75
                                      48
                                            -83
 3
        11.5
               30.1
                        14
                              -38
                                     -16
                                           -148
                              -38
Critical force:
Shear wall B-1, Level 1
\textsc{E->W} and N->S wind design, flexible diaphragm
vmax = 39.2, V/L = 26.3, Co = 0.923, FHS = 21.0, sum (bi) = 20.37
Seg w/ Seg Other
                       Drag strut force at
vmax Length v
                      11.75 13.75 19.50 24.50
1
        3.75
               34.2
                       -48
                                     -41
                                             91
         5.75 33.5
                       -27
                               26
                                     -48
                                             83
3
        11.5 30.1
                       -14
                               38
                                     16
                                            148
Critical force:
                       -48
                               38
                                      -48
                                            148
Shear wall B-1, Level 1
E{\operatorname{\mathsf{--}W}} and N{\operatorname{\mathsf{--}S}} seismic design, flexible diaphragm
vmax = 54.6, V/L = 36.7, Co = 0.923, FHS = 21.0, sum (bi) = 20.37
Seg w/ Seg Other
                       Drag strut force at
                      11.75 13.75 19.50 24.50
vmax Length v
        3.75 47.7
                       -67
1
                                     -57
              46.8
2
        5.75
                       -38
                               36
                                     -67
                                            116
```

3

11.5

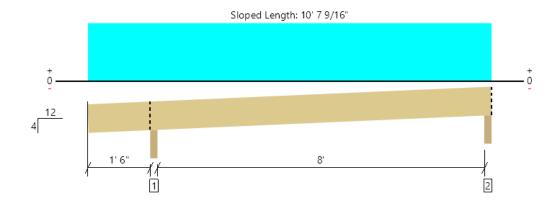
Critical force:

42.0

-20

-67

53


23

-67

206

Level, B1: Roof Rafter 1 piece(s) 2 x 8 DF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	487 @ 1' 7 3/4"	2352 (3.50")	Passed (21%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	293 @ 2' 4 3/8"	1631	Passed (18%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	654 @ 5' 10 5/8"	1700	Passed (38%)	1.25	1.0 D + 1.0 Lr (Alt Spans)
Live Load Defl. (in)	0.057 @ 5' 9 7/16"	0.434	Passed (L/999+)		1.0 D + 1.0 Lr (Alt Spans)
Total Load Defl. (in)	0.115 @ 5' 9 5/8"	0.578	Passed (L/908)		1.0 D + 1.0 Lr (Alt Spans)

Member Length : 10' 9 15/16"

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 4/12

- . Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

	В	Bearing Length			to Supports		
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Beveled Plate - SPF	3.50"	3.50"	1.50"	250	237	487	Blocking
2 - Beveled Plate - SPF	3.50"	3.50"	1.50"	175	170	345	Blocking

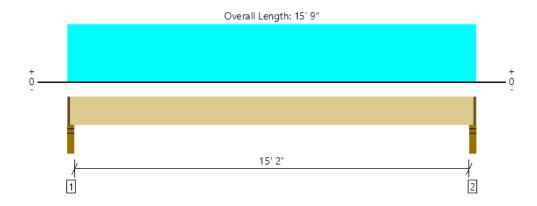
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 8" o/c	
Bottom Edge (Lu)	10' 8" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Roof Live (non-snow: 1.25)	Comments
1 - Uniform (PSF)	0 to 10' 1"	24"	20.0	20.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Jeffrey Ford Jackson and Sands (530) 715-7184 Jeffrey@jacksonandsandsengineering.com		

Level, B2: Roof Joist 1 piece(s) 2 x 8 DF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	342 @ 2 1/2"	2109 (2.25")	Passed (16%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	307 @ 10 3/4"	1631	Passed (19%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	1293 @ 7' 10 1/2"	1700	Passed (76%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.326 @ 7' 10 1/2"	0.383	Passed (L/564)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.718 @ 7' 10 1/2"	0.767	Passed (L/256)		1.0 D + 1.0 Lr (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- · Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	189	158	347	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50"	189	158	347	1 1/4" Rim Board

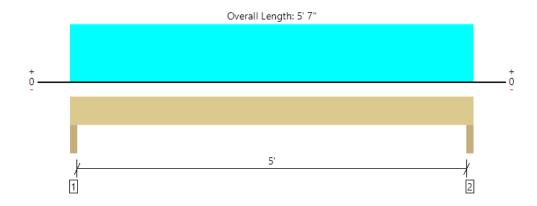
[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 11" o/c	
Bottom Edge (Lu)	15' 7" o/c	

 $[\]bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

			Dead	Roof Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(non-snow: 1.25)	Comments
1 - Uniform (PSF)	0 to 15' 9"	24"	12.0	10.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Jeffrey Ford Jackson and Sands (530) 715-7184 jeffrey@jacksonandsandsengineering.com		

Level, B3: Typ. Header 1 piece(s) 6 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1460 @ 2"	12031 (3.50")	Passed (12%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	980 @ 11"	5844	Passed (17%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	1801 @ 2' 9 1/2"	4028	Passed (45%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.016 @ 2' 9 1/2"	0.175	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.036 @ 2' 9 1/2"	0.262	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

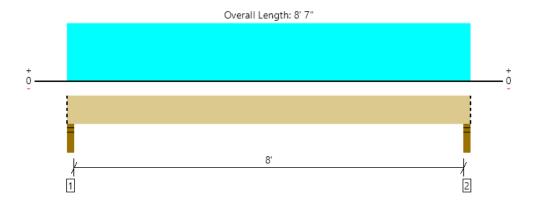
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	792	667	1460	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	792	667	1460	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 7" o/c	
Bottom Edge (Lu)	5' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Roof Live (non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 5' 7"	N/A	10.4		
1 - Uniform (PSF)	0 to 5' 7"	8'	22.4	20.0	Default Load
2 - Uniform (PLF)	0 to 5' 7"	N/A	94.5	79.0	Linked from: B2: Roof Joist, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Jeffrey Ford Jackson and Sands (530) 715-7184 jeffrey@jacksonandsandsengineering.com	

Level, B4: Porch Beam 1 piece(s) 6 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2256 @ 2"	8181 (3.50")	Passed (28%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	1686 @ 1' 1"	7402	Passed (23%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	4472 @ 4' 3 1/2"	7540	Passed (59%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.049 @ 4' 3 1/2"	0.275	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.107 @ 4' 3 1/2"	0.412	Passed (L/923)		1.0 D + 1.0 Lr (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	1230	1026	2256	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	1230	1026	2256	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Roof Live (non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	13.2		
1 - Uniform (PSF)	0 to 8' 7" (Top)	8'	22.4	20.0	Default Load
2 - Uniform (PLF)	0 to 8' 7" (Top)	N/A	94.5		Linked from: B2: Roof Joist, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Jeffrey Ford Jackson and Sands (530) 715-7184 jeffrey@jacksonandsandsengineering.com		

General Footing

LIC#: KW-06012341, Build:20.23.2.14

Jackson & Sands Engineering

Project File: 23M-007 Orland ADU's.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: F1, Cont. Footing

Code References

Calculations per ACI 318-19, IBC 2021, ASCE 7-16

Load Combinations Used: ASCE 7-16

General Information

Material Properties				Soil Design Values		
f'c : Concrete 28 day strength	=	2	.50 ksi	Allowable Soil Bearing	=	1.50 ksf
fy : Rebar Yield	=	6	0.0 ksi	Soil Density	=	110.0 pcf
Ec : Concrete Elastic Modulus	=	,	2.0 ksi	Increase Bearing By Footing Weight	=	No .
Concrete Density	=	14	5.0 pcf	Soil Passive Resistance (for Sliding)	=	250.0 pcf
₍₎ Values Flexure	=	0	.90	Soil/Concrete Friction Coeff.	=	0.30
' Shear	=	0.7	750	Increases based on footing Depth		
Analysis Settings				Footing base depth below soil surface	=	ft
Min Steel % Bending Reinf.		=		Allow press. increase per foot of depth	=	ksf
Min Allow % Temp Reinf.		=	0.00180	when footing base is below	=	ft
Min. Overturning Safety Factor		=	1.0 : 1	ŭ		
Min. Sliding Safety Factor		=	1.0 : 1	Increases based on footing plan dimensi	ion	
Add Ftg Wt for Soil Pressure		:	Yes	Allowable pressure increase per foot of d	epth	
Use ftg wt for stability, moments & shears		:	Yes		=	ksf
Add Pedestal Wt for Soil Pressure			No	when max. length or width is greater than	1	,,
Use Pedestal wt for stability, mom & shear			No		=	ft
Ose redestal willor stability, morn & sin	zai	•	INO			

Dimensions

Width parallel to X-X Axis	=	1.0 ft
Length parallel to Z-Z Axis	=	1.750 ft
Footing Thickness	=	12.0 in

Pedestal dimensions... px : parallel to X-X Axis in pz : parallel to Z-Z Axis in Height in Rebar Centerline to Edge of Concrete... at Bottom of footing 3.0 in

Ζ Χ Χ <u>_</u>6 Edge Dist. 1'-0'

Reinforcing

Bars parallel to X-X Axis Number of Bars 3 Reinforcing Bar Size 4 Bars parallel to Z-Z Axis Number of Bars 2.0 Reinforcing Bar Size Bandwidth Distribution Check (ACI 15.4.4.2) **Direction Requiring Closer Separation**

Bars along X-X Axis

Bars required within zone 72.7 %

Bars required on each side of zone 27.3 %

Applied Loads

		D	Lr	L	s	W	E	Н
P : Column Load OB : Overburden	= =	0.6740	1.460		0.0			k ksf
M-xx M-zz	= =							k-ft k-ft
V-x V-z	= =							k k

General Footing

Project File: 23M-007 Orland ADU's.ec6

LIC#: KW-06012341, Build:20.23.2.14 Jackson & Sands Engineering

(c) ENERCALC INC 1983-2022

Design OK

DESCRIPTION: F1, Cont. Footing

DESIGN	SUN	ЛМА	RY
--------	-----	------------	----

	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9093	Soil Bearing	1.364 ksf	1.50 ksf	+D+Lr about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.01694	Z Flexure (+X)	0.2246 k-ft/ft	13.263 k-ft/ft	+1.20D+1.60Lr
PASS	0.01694	Z Flexure (-X)	0.2246 k-ft/ft	13.263 k-ft/ft	+1.20D+1.60Lr
PASS	0.04481	X Flexure (+Z)	0.6879 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	0.04481	X Flexure (-Z)	0.6879 k-ft/ft	15.353 k-ft/ft	+1.20D+1.60Lr
PASS	n/a	1-way Shear (+X)	0.0 psi	75.0 psi	n/a
PASS	0.0	1-way Shear (-X)	0.0 psi	0.0 psi	n/a
PASS	0.02718	1-way Shear (+Z)	2.038 psi	75.0 psi	+1.20D+1.60Lr
PASS	0.02718	1-way Shear (-Z)	2.038 psi	75.0 psi	+1.20D+1.60Lr
PASS	n/a	2-way Punching	6.608 psi	75.0 psi	+1.20D+1.60Lr

Detailed Results

Soil		

Rotation Axis &		Xecc	Zecc	Actual	Actual Soil Bearing Stress @ Location					
Load Combination	Gross Allowable	(in	1)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio		
X-X, D Only	1.50	n/a	0.0	0.5301	0.5301	n/a	n/a	0.353		
X-X, +D+Lr	1.50	n/a	0.0	1.364	1.364	n/a	n/a	0.909		
X-X, +D+0.750Lr	1.50	n/a	0.0	1.156	1.156	n/a	n/a	0.771		
X-X, +0.60D	1.50	n/a	0.0	0.3181	0.3181	n/a	n/a	0.212		
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.5301	0.5301	0.353		
Z-Z, +D+Lr	1.50	0.0	n/a	n/a	n/a	1.364	1.364	0.909		
Z-Z, +D+0.750Lr	1.50	0.0	n/a	n/a	n/a	1.156	1.156	0.771		
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.3181	0.3181	0.212		

Overturning Stability

Rotation Axis &				
Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
Footing Has NO Overturning				
Cliding Stability				All units k

Sliding Stability

Force Application Axis
Load Combination... Sliding Force Resisting Force Stability Ratio Status
Footing Has NO Sliding

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.2064	+Z	Bottom	0.2592	AsMin	0.40	15.353	ок
X-X, +1.40D	0.2064	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+0.50Lr	0.3366	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+0.50Lr	0.3366	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D	0.1769	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D	0.1769	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+1.60Lr	0.6879	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +1.20D+1.60Lr	0.6879	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +0.90D	0.1327	+Z	Bottom	0.2592	AsMin	0.40	15.353	OK
X-X, +0.90D	0.1327	-Z	Bottom	0.2592	AsMin	0.40	15.353	OK
Z-Z, +1.40D	0.06740	-X	Bottom	0.2592	AsMin	0.3429	13.263	OK
Z-Z, +1.40D	0.06740	+X	Bottom	0.2592	AsMin	0.3429	13.263	OK
Z-Z, +1.20D+0.50Lr	0.1099	-X	Bottom	0.2592	AsMin	0.3429	13.263	OK
Z-Z, +1.20D+0.50Lr	0.1099	+X	Bottom	0.2592	AsMin	0.3429	13.263	OK
Z-Z, +1.20D	0.05777	-X	Bottom	0.2592	AsMin	0.3429	13.263	ok
Z-Z, +1.20D	0.05777	+X	Bottom	0.2592	AsMin	0.3429	13.263	ok
Z-Z, +1.20D+1.60Lr	0.2246	-X	Bottom	0.2592	AsMin	0.3429	13.263	ОК

General Footing

Project File: 23M-007 Orland ADU's.ec6

LIC#: KW-06012341, Build:20.23.2.14

Jackson & Sands Engineering

(c) ENERCALC INC 1983-2022

DESCRIPTION: F1, Cont. Footing

Footing Flexure										
Flexure Axis & Load Combination	n <mark>Mu</mark> k-ft	Side	Tension Surface			vrn. A in^2	s Actual in^2		Phi*Mn k-ft	Status
Z-Z, +1.20D+1.60Lr	0.2246	+X	Bottom	0.2592	A	sMin	0.342	9	13.263	ок
Z-Z, +0.90D	0.04333	-X	Bottom	0.2592	A:	sMin	0.342	.9	13.263	OK
Z-Z, +0.90D	0.04333	+X	Bottom	0.2592	A:	sMin	0.342	.9	13.263	OK
One Way Shear										
Load Combination	Vu @ -X	Vu @	+X Vι	ı @ -Z Vı	ı @ +Z		Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	0.00 p	si	0.00 psi	0.61 psi	0.	61 psi	0.61 psi	75.00	psi 0.01	OK
+1.20D+0.50Lr	0.00 p	si	0.00 psi	1.00 psi	1.	00 psi	1.00 psi	75.00	psi 0.01	OK
+1.20D	0.00 p	si	0.00 psi	0.52 psi	0.	52 psi	0.52 psi	75.00	psi 0.01	OK
+1.20D+1.60Lr	0.00 p	si	0.00 psi	2.04 psi	2.	04 psi	2.04 psi	75.00	psi 0.03	OK
+0.90D	0.00 p	si	0.00 psi	0.39 psi	0.	39 psi	0.39 psi	75.00	psi 0.01	OK
Two-Way "Punching" Shear			•	·		•	·		All unit	s k
Load Combination		Vu		Phi*Vn			Vu / Phi*Vn	1		Status
+1.40D		1.9	8 psi	150.00)psi		0.01322			OK
+1.20D+0.50Lr		3.2	3 psi	150.00)psi		0.02156			oĸ
+1.20D		1.7	0 psi	150.00) psi		0.01133			OK
+1.20D+1.60Lr		6.6	1 psi	150.00)psi		0.04405			OK
+0.90D		1.2	8 psi	150.00)psi		0.008497			OK

(c) ENERCALC INC 1983-2022

Project Title: Engineer: Project ID: Project Descr:

General Footing

LIC#: KW-06012341, Build:20.23.2.14

Jackson & Sands Engineering

Project File: 23M-007 Orland ADU's.ec6

DESCRIPTION: F2, Pier Footing: Porch

Code References

Calculations per ACI 318-19, IBC 2021, ASCE 7-16

Load Combinations Used: ASCE 7-16

General Information

Material Properties				Soil Design Values		
f'c : Concrete 28 day strength	=	2	.50 ksi	Allowable Soil Bearing	=	1.50 ksf
fy : Rebar Yield	=	6	0.0 ksi	Soil Density	=	110.0 pcf
Ec : Concrete Elastic Modulus	=	3,12	2.0 ksi	Increase Bearing By Footing Weight	=	No [']
Concrete Density	=	14	5.0 pcf	Soil Passive Resistance (for Sliding)	=	250.0 pcf
₀ Values Flexure	=	0	.90	Soil/Concrete Friction Coeff.	=	0.30
Shear	=	0.7	750	Increases based on footing Depth		
Analysis Settings				Footing base depth below soil surface	=	ft
Min Steel % Bending Reinf.		=		Allow press. increase per foot of depth	=	ksf
Min Allow % Temp Reinf.		=	0.00180	when footing base is below	=	ft
Min. Overturning Safety Factor		=	1.0 : 1	ŭ		
Min. Sliding Safety Factor		=	1.0 : 1	Increases based on footing plan dimensi	on	
Add Ftg Wt for Soil Pressure		:	Yes	Allowable pressure increase per foot of d	epth	
Use ftg wt for stability, moments & shea	rs	:	Yes		=	ksf
Add Pedestal Wt for Soil Pressure			No	when max. length or width is greater than		
Use Pedestal wt for stability, mom & she	ear		No		=	ft
	Jui	•	140			

Dimensions

Width parallel to X-X Axis	=	1.50 ft
Length parallel to Z-Z Axis	=	1.50 ft
Footing Thickness	=	12.0 in

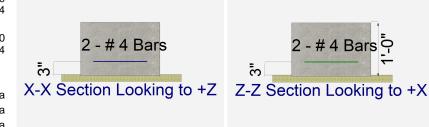
Pedestal dimensions...

px : parallel to X-X Axis = in

pz : parallel to Z-Z Axis = in

Height = in

Rebar Centerline to Edge of Concrete...


at Bottom of footing = 3.0 in

Reinforcing

Bars parallel to X-X Axis			
Number of Bars	=		2.0
Reinforcing Bar Size	=	#	4
Bars parallel to Z-Z Axis			
Number of Bars	=		2.0
Reinforcing Bar Size	=	#	4
Bandwidth Distribution C	Check (ACI 15.	4.4.2)	
Direction Requiring Close	r Separation		

n/a
Bars required within zone n/a
Bars required on each side of zone n/a

Applied Loads

		D	Lr	L	S	W	E	Н
P : Column Load OB : Overburden	=	1.230	1.026		0.0			k ksf
								k-ft
M-xx M-zz	=							k-ft
V-x	=							k
V-z	=							k

General Footing

LIC#: KW-06012341, Build:20.23.2.14

Jackson & Sands Engineering

Project File: 23M-007 Orland ADU's.ec6

(c) ENERCALC INC 1983-2022

DESCRIPTION: F2, Pier Footing: Porch

SIGN S	UMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.7653	Soil Bearing	1.148 ksf	1.50 ksf	+D+Lr about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.03739	Z Flexure (+X)	0.3897 k-ft/ft	10.424 k-ft/ft	+1.20D+1.60Lr
PASS	0.03739	Z Flexure (-X)	0.3897 k-ft/ft	10.424 k-ft/ft	+1.20D+1.60Lr
PASS	0.03739	X Flexure (+Z)	0.3897 k-ft/ft	10.424 k-ft/ft	+1.20D+1.60Lr
PASS	0.03739	X Flexure (-Z)	0.3897 k-ft/ft	10.424 k-ft/ft	+1.20D+1.60Lr
PASS	n/a	1-way Shear (+X)	0.0 psi	75.0 psi	n/a
PASS	0.0	1-way Shear (-X)	0.0 psi	0.0 psi	n/a
PASS	n/a	1-way Shear (+Z)	0.0 psi	75.0 psi	n/a
PASS	n/a	1-way Shear (-Z)	0.0 psi	75.0 psi	n/a
PASS	n/a	2-way Punching	7.217 psi	75.0 psi	+1.20D+1.60Lr

Detailed Results

Bearir	

Rotation Axis &		Xecc Zecc Actual Soil Bearing Stress @ Location					ation	Actual / Allow	
Load Combination	Gross Allowable	(in	1)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio	
X-X, D Only	1.50	n/a	0.0	0.6917	0.6917	n/a	n/a	0.461	
X-X, +D+Lr	1.50	n/a	0.0	1.148	1.148	n/a	n/a	0.765	
X-X, +D+0.750Lr	1.50	n/a	0.0	1.034	1.034	n/a	n/a	0.689	
X-X, +0.60D	1.50	n/a	0.0	0.4150	0.4150	n/a	n/a	0.277	
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.6917	0.6917	0.461	
Z-Z, +D+Lr	1.50	0.0	n/a	n/a	n/a	1.148	1.148	0.765	
Z-Z, +D+0.750Lr	1.50	0.0	n/a	n/a	n/a	1.034	1.034	0.689	
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.4150	0.4150	0.277	

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
Footing Has NO Overturning				
Cliding Ctobility				All units k

Sliding Stability

Force Application Axis Load Combination... **Sliding Force Stability Ratio Resisting Force Status** Footing Has NO Sliding

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.2153	+Z	Bottom	0.2592	AsMin	0.2667	10.424	ок
X-X, +1.40D	0.2153	-Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +1.20D+0.50Lr	0.2486	+Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +1.20D+0.50Lr	0.2486	-Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +1.20D	0.1845	+Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +1.20D	0.1845	-Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +1.20D+1.60Lr	0.3897	+Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +1.20D+1.60Lr	0.3897	-Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +0.90D	0.1384	+Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
X-X, +0.90D	0.1384	-Z	Bottom	0.2592	AsMin	0.2667	10.424	OK
Z-Z, +1.40D	0.2153	-X	Bottom	0.2592	AsMin	0.2667	10.424	OK
Z-Z, +1.40D	0.2153	+X	Bottom	0.2592	AsMin	0.2667	10.424	OK
Z-Z, +1.20D+0.50Lr	0.2486	-X	Bottom	0.2592	AsMin	0.2667	10.424	OK
Z-Z, +1.20D+0.50Lr	0.2486	+X	Bottom	0.2592	AsMin	0.2667	10.424	OK
Z-Z, +1.20D	0.1845	-X	Bottom	0.2592	AsMin	0.2667	10.424	ok
Z-Z, +1.20D	0.1845	+X	Bottom	0.2592	AsMin	0.2667	10.424	oĸ
Z-Z, +1.20D+1.60Lr	0.3897	-X	Bottom	0.2592	AsMin	0.2667	10.424	oĸ

(c) ENERCALC INC 1983-2022

Project Title: Engineer: Project ID: Project Descr:

General Footing

LIC#: KW-06012341, Build:20.23.2.14

Jackson & Sands Engineering

Project File: 23M-007 Orland ADU's.ec6

DESCRIPTION: F2, Pier Footing: Porch

Footing Flexure									
Flexure Axis & Load Combination	n Mu k-ft	Side	Tensior Surface		Gvrn. A in^2	As Actual in^2		i*Mn <-ft	Status
Z-Z, +1.20D+1.60Lr	0.3897	+X	Bottom	0.2592	AsMin	0.266	7	10.424	OK
Z-Z, +0.90D	0.1384	-X	Bottom	0.2592	AsMin	0.266	7	10.424	oĸ
Z-Z, +0.90D	0.1384	+X	Bottom	0.2592	AsMin	0.266	7	10.424	oĸ
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X Vı	ı @ -Z Vu	@ +Z	Vu:Max	Phi Vn	/u / Phi*Vn	Status
+1.40D	0.00 p	si	0.00 psi	0.00 psi	0.00 ps	i 0.00 psi	75.00 ps	i 0.00	ОК
+1.20D+0.50Lr	0.00 p	si	0.00 psi	0.00 psi	0.00 ps	i 0.00 psi	75.00 ps	i 0.00	OK
+1.20D	0.00 p	si	0.00 psi	0.00 psi	0.00 ps	i 0.00 psi	75.00 ps	i 0.00	OK
+1.20D+1.60Lr	0.00 p	si	0.00 psi	0.00 psi	0.00 ps	i 0.00 psi	75.00 ps	i 0.00	OK
+0.90D	0.00 p	si	0.00 psi	0.00 psi	0.00 ps	i 0.00 psi	75.00 ps	i 0.00	OK
Two-Way "Punching" Shear			·	•	•	•	·	All units	s k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		3.9	9 psi	150.00	psi	0.02657			OK
+1.20D+0.50Lr		4.6	0 psi	150.00	psi	0.03069			oĸ
+1.20D			2 psi	150.00	psi	0.02278			oĸ
+1.20D+1.60Lr		7.2	2 psi	150.00	psi	0.04811			oĸ
+0.90D		2.5	6 psi	150.00	psi	0.01708			oĸ